1. (本小題滿分12分)
如圖,直四棱柱ABCD—A1B1C1D1的高為3,底面是邊長為4且∠DAB = 60°的菱形,ACBD = O,A1C1B1D1 = O1,E是O1A的中點(diǎn).
(1) 求二面角O1-BC-D的大小;
(2) 求點(diǎn)E到平面O1BC的距離.
|
60°,
【解析】
解法一:
(1) 過O作OF⊥BC于F,連接O1F,
∵OO1⊥面AC,∴BC⊥O1F,
∴∠O1FO是二面角O1-BC-D的平面角,········ 3分
∵OB = 2,∠OBF = 60°,∴OF =.
在Rt△O1OF中,tan∠O1FO =
∴∠O1FO=60° 即二面角O1—BC—D的大小為60°············· 6分
(2) 在△O1AC中,OE是△O1AC的中位線,∴OE∥O1C
∴OE∥O1BC,∵BC⊥面O1OF,∴面O1BC⊥面O1OF,交線O1F.
過O作OH⊥O1F于H,則OH是點(diǎn)O到面O1BC的距離,··········· 10分
∴OH = ∴點(diǎn)E到面O1BC的距離等于················ 12分
解法二:
(1) ∵OO1⊥平面AC,
∴OO1⊥OA,OO1⊥OB,又OA⊥OB,········· 2分
建立如圖所示的空間直角坐標(biāo)系(如圖)
∵底面ABCD是邊長為4,∠DAB = 60°的菱形,
∴OA = 2,OB = 2,
則A(2,0,0),B(0,2,0),C(-2,0,0),O1(0,0,3)··· 3分
設(shè)平面O1BC的法向量為=(x,y,z),則⊥,⊥,
∴,則z = 2,則x=-,y = 3,
∴=(-,3,2),而平面AC的法向量=(0,0,3)········ 5分
∴ cos<,>=,
設(shè)O1-BC-D的平面角為α, ∴cosα=∴α=60°.
故二面角O1-BC-D為60°.······················ 6分
(2) 設(shè)點(diǎn)E到平面O1BC的距離為d,
∵E是O1A的中點(diǎn),∴=(-,0,),············· 9分
則d=
∴點(diǎn)E到面O1BC的距離等于.···················· 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com