【題目】已知兩條直線m,n和兩個(gè)不同平面α,β,滿足α⊥β,α∩β=l,m∥α,n⊥β,則( )
A.m∥n
B.m⊥n
C.m∥l
D.n⊥l
【答案】D
【解析】解:兩條直線m,n和兩個(gè)不同平面α,β,滿足α⊥β,α∩β=l,m∥α,n⊥β,則m,n的位置關(guān)系是,平行,相交或異面,直線n與l的位置關(guān)系是垂直,如圖:
故選:D.
【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系和空間中直線與平面之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn);直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a10=17,其前n項(xiàng)和Sn滿足Sn=n2+cn+2.
(1)求實(shí)數(shù)c的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,旅客從某旅游區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50米/分鐘,在甲出發(fā)2分鐘后,乙從A乘纜車到B,再?gòu)腂勻速步行到C.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為130米/分鐘,山路AC長(zhǎng)1260米,經(jīng)測(cè)量,cosA= ,cosC= .
(1)求索道AB的長(zhǎng);
(2)問乙出發(fā)后多少分鐘后,乙在纜車上與甲的距離最短?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ADEF和菱形ABCD所在平面互相垂直,如圖,其中AF=1,AD=2,∠ADC= ,點(diǎn)N時(shí)線段AD的中點(diǎn).
(Ⅰ)試問在線段BE上是否存在點(diǎn)M,使得直線AF∥平面MNC?若存在,請(qǐng)證明AF∥平面MNC,并求出 的值,若不存在,請(qǐng)說明理由;
(Ⅱ)求二面角N﹣CE﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣ |+|x+m|,(m>0)
(I)證明:f(x)≥4
(II)若f(1)>5,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的方程為x2+y2﹣6x=0,過點(diǎn)(1,2)的該圓的三條弦的長(zhǎng)a1 , a2 , a3構(gòu)成等差數(shù)列,則數(shù)列a1 , a2 , a3的公差的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完 局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為 ,乙獲勝的概率為 ,各局比賽結(jié)果相互獨(dú)立.
(Ⅰ)求甲在4局以內(nèi)(含 4 局)贏得比賽的概率;
(Ⅱ)記 X 為比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com