【題目】設(shè)直線與拋物線相交于不同兩點(diǎn),與圓相切于點(diǎn),且為線段中點(diǎn)

(1)是正三角形(是坐標(biāo)原點(diǎn)),求此三角形的邊長(zhǎng);

(2) 若,求直線的方程

(3)對(duì)進(jìn)行討論,請(qǐng)你寫出符合條件的直線數(shù)(直接寫出結(jié)論).

【答案】(1)(2)(3)見解析

【解析】試題分析:(1)若是正三角形(是坐標(biāo)原點(diǎn)),求出的坐標(biāo),即可求出此三角形的邊長(zhǎng);(2)若,設(shè)直線,分類討論,即可求出直線的方程;(3)根據(jù)直線與圓的位置關(guān)系,可得結(jié)論.

試題解析:(1)設(shè)的邊長(zhǎng)為,則的坐標(biāo)為

所以所以

此三角形的邊長(zhǎng)為

(2)設(shè)直線

當(dāng)時(shí), 符合題意

當(dāng)時(shí),

,

,

,

,舍去

綜上所述,直線的方程為:

(3) 時(shí),共2條;

時(shí),共4條;

時(shí),共1條.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個(gè)不在軸上的動(dòng)點(diǎn), 為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交曲線, 兩個(gè)不同的點(diǎn).

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請(qǐng)說明理由;

(Ⅲ)記的面積為 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知以為圓心的圓的方程為: ,以為圓心的圓的方程為:

(1)若過點(diǎn)的直線沿軸向左平移3個(gè)單位,沿軸向下平移4個(gè)單位后,回到原來的位置,求直線被圓截得的弦長(zhǎng);

(2)圓是以1為半徑,圓心在圓 上移動(dòng)的動(dòng)圓 ,若圓上任意一點(diǎn)分別作圓的兩條切線,切點(diǎn)為,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△OAB的頂點(diǎn)坐標(biāo)為O(0,0),A(2,9),B(6,﹣3),點(diǎn)P的橫坐標(biāo)為14,且 ,點(diǎn)Q是邊AB上一點(diǎn),且
(1)求實(shí)數(shù)λ的值與點(diǎn)P的坐標(biāo);
(2)求點(diǎn)Q的坐標(biāo);
(3)若R為線段OQ上的一個(gè)動(dòng)點(diǎn),試求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 、分別為直角三角形的直角邊和斜邊的中點(diǎn),沿折起到的位置,連結(jié)、, 的中點(diǎn).

1)求證: 平面;(2)求證:平面平面;

3)求證: 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域是,對(duì)于以下四個(gè)命題:

(1)是奇函數(shù),則也是奇函數(shù);

(2)是周期函數(shù),則也是周期函數(shù);

(3)是單調(diào)遞減函數(shù),則也是單調(diào)遞減函數(shù);

(4) 若函數(shù)存在反函數(shù),且函數(shù)有零點(diǎn),則函數(shù)也有零點(diǎn).

其中正確的命題共有

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=1,an+1=2an+1,b1=4,bn﹣bn1=an+1(n≥2).
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an},{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 是某海灣旅游區(qū)的一角,其中,為了營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定在直線海岸上分別修建觀光長(zhǎng)廊AC,其中是寬長(zhǎng)廊,造價(jià)是元/米, 是窄長(zhǎng)廊,造價(jià)是元/米,兩段長(zhǎng)廊的總造價(jià)為120萬元,同時(shí)在線段上靠近點(diǎn)的三等分點(diǎn)處建一個(gè)觀光平臺(tái),并建水上直線通道(平臺(tái)大小忽略不計(jì)),水上通道的造價(jià)是元/米.

(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項(xiàng)目,要求的面積最大,那么的長(zhǎng)度分別為多少米?

(2) 在(1)的條件下,建直線通道還需要多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱柱中,底面,底面為菱形,交點(diǎn),已知,

(I)求證:平面

(II)在線段上是否存在一點(diǎn),使得平面,如果存在,求的值,如果不存在,請(qǐng)說明理由.

(III)設(shè)點(diǎn)內(nèi)(含邊界),且求所有滿足條件的點(diǎn)構(gòu)成的圖形,并求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案