正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成的角的余弦值為
A.B.C.D.
D

試題分析:正方體上下底面中心的連線平行于BB1,上下底面中心的連線平面ACD1所成角即為線面角,直角三角形中求出此角的余弦值.如圖,設(shè)上下底面的中心分別為O1,O;
O1O與平面ACD1所成角就是BB1與平面ACD1所成角,則可知,故選D.

點(diǎn)評:本小題主要考查正方體的性質(zhì)、直線與平面所成的角、點(diǎn)到平面的距離的求法,利用等體積轉(zhuǎn)化求出D到平面ACD1的距離是解決本題的關(guān)鍵所在,這也是轉(zhuǎn)化思想的具體體現(xiàn)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=600,AC=7,AD=6,S△ADC=,
求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行四邊ABCD中,,,若將其沿BD折成直二面角 A-BD-C,則三棱錐A—BCD的外接球的體積為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知四棱錐的底面為平行四邊形,分別是棱的中點(diǎn),平面與平面交于,求證:

(1)平面;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是異面直線,則(1)一定存在平面α,使mα,且n∥α;(2)一定存在平面α,使mα,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距離相等;(4)一定存在無數(shù)對平面α和β,使mα,nβ且α⊥β。上述4個命題中正確命題的序號是(   )
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖:

(1)求的大;
(2)當(dāng)時,判斷的形狀,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,EPC的中點(diǎn),作PB于點(diǎn)F

(I) 證明: PA∥平面EDB
(II) 證明:PB⊥平面EFD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱,為中點(diǎn),中點(diǎn),上一個動點(diǎn).

(Ⅰ)確定點(diǎn)的位置,使得;
(Ⅱ)當(dāng)時,求二面角的平
面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若兩直線相交,且∥平面,則的位置關(guān)系是________.

查看答案和解析>>

同步練習(xí)冊答案