【題目】已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的中垂線與交于點(diǎn).

(Ⅰ)求點(diǎn)的軌跡的方程.

(Ⅱ)斜率不為0的動(dòng)直線過(guò)點(diǎn)且與軌跡交于,兩點(diǎn),為坐標(biāo)原點(diǎn).是否存在常數(shù),使得為定值?若存在,求出這個(gè)定值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(Ⅰ)(Ⅱ)見(jiàn)解析

【解析】

1)化圓的一般方程為標(biāo)準(zhǔn)方程,求出圓心和半徑,結(jié)合已知可得點(diǎn)的軌跡是以,為焦點(diǎn),且長(zhǎng)軸長(zhǎng)為的橢圓,進(jìn)而求出b,a,即可求得答案

2)聯(lián)立直線方程和橢圓方程,求出的表達(dá)式,然后結(jié)合題意中為定值計(jì)算出結(jié)果

(Ⅰ)由,得,

所以,半徑為4.

因?yàn)榫段的中垂線與交于點(diǎn),所以

所以.

所以點(diǎn)的軌跡是以,為焦點(diǎn),且長(zhǎng)軸長(zhǎng)為的橢圓,

所以.

所以點(diǎn)的軌跡的方程為.

(Ⅱ)設(shè)直線,,.

聯(lián)立化簡(jiǎn)整理得

所以,.

因?yàn)?/span> ,

,

所以

.

當(dāng),即時(shí),取定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),

1)求的函數(shù)解析式;

2)作出的草圖,并求出當(dāng)函數(shù)個(gè)不同零點(diǎn)時(shí),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知上的偶函數(shù),當(dāng)時(shí),.對(duì)于結(jié)論

1)當(dāng)時(shí),;

2)函數(shù)的零點(diǎn)個(gè)數(shù)可以為;

3)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是

以上說(shuō)法正確的序號(hào)是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛(ài)好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過(guò)隨機(jī)調(diào)查200名高中生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結(jié)論是(

A. 99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)

B. 99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側(cè)面積.

【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) .

【解析】試題分析】(I)的中點(diǎn)為,連接.利用等腰三角形的性質(zhì)和矩形的性質(zhì)可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質(zhì)求得的值,進(jìn)而求得面積.

試題解析】

證明:(Ⅰ)取的中點(diǎn)為,連接,

為等邊三角形,∴.

底面中,可得四邊形為矩形,∴,

,∴平面,

平面,∴.

,所以.

(Ⅱ)由面,

平面,所以為棱錐的高,

,知

,

.

由(Ⅰ)知,∴.

.

,可知平面,∴,

因此.

,,

的中點(diǎn),連結(jié),則,,

.

所以棱錐的側(cè)面積為.

型】解答
結(jié)束】
20

【題目】已知圓經(jīng)過(guò)橢圓 的兩個(gè)焦點(diǎn)和兩個(gè)頂點(diǎn),點(diǎn), , 是橢圓上的兩點(diǎn),它們?cè)?/span>軸兩側(cè),且的平分線在軸上, .

(Ⅰ)求橢圓的方程;

(Ⅱ)證明:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫(xiě)出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫(xiě)出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開(kāi)后化簡(jiǎn)得直角坐標(biāo)方程.(II)求得兩點(diǎn)的坐標(biāo), 設(shè)點(diǎn),代入向量,利用三角函數(shù)的值域來(lái)求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標(biāo)方程為.

(Ⅱ)由直線的方程可得點(diǎn),點(diǎn).

設(shè)點(diǎn),則 .

.

由(Ⅰ)知,則 .

因?yàn)?/span>,所以.

型】解答
結(jié)束】
23

【題目】選修4-5:不等式選講

已知函數(shù), .

(Ⅰ)若對(duì)于任意, 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三統(tǒng)考結(jié)束后,分別從喜歡數(shù)學(xué)和不喜歡數(shù)學(xué)的學(xué)生中各隨機(jī)抽取了10人的成績(jī),分?jǐn)?shù)都是整數(shù),得到如下莖葉圖,但是喜歡數(shù)學(xué)和不喜歡數(shù)學(xué)的各缺失了一個(gè)數(shù)據(jù).若已知不喜歡數(shù)學(xué)的10人成績(jī)的中位數(shù)為75,且已知喜歡數(shù)學(xué)的10人中所缺失成績(jī)是85分以上,但是不高于喜歡數(shù)學(xué)的10人的平均分.不喜歡數(shù)學(xué)和喜歡數(shù)學(xué)缺失的數(shù)據(jù)分別是____,____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,命題方程表示焦點(diǎn)在軸上的橢圓,命題方程表示雙曲線.

(1)若命題是真命題,求實(shí)數(shù)的范圍;

(2)若命題“”為真命題,“”是假命題,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,銷售利潤(rùn)分別為2千元/件、1千元/件.甲、乙兩種產(chǎn)品都需要在兩種設(shè)備上加工,生產(chǎn)一件甲產(chǎn)品需用設(shè)備2小時(shí), 設(shè)備6小時(shí);生產(chǎn)一件乙產(chǎn)品需用設(shè)備3小時(shí), 設(shè)備1小時(shí). 兩種設(shè)備每月可使用時(shí)間數(shù)分別為480小時(shí)、960小時(shí),若生產(chǎn)的產(chǎn)品都能及時(shí)售出,則該企業(yè)每月利潤(rùn)的最大值為( )

A. 320千元 B. 360千元 C. 400千元 D. 440千元

查看答案和解析>>

同步練習(xí)冊(cè)答案