計算:
lim
x→-∞
(x4+x5)=
 
考點:極限及其運算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:變形
lim
x→-∞
(x4+x5)=
lim
x→∞
x4(1+x)
,即可得出.
解答: 解:
lim
x→-∞
(x4+x5)=
lim
x→∞
x4(1+x)
=-∞.
故答案為:-∞.
點評:本題考查了極限的運算法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集為R,函數(shù)f(x)=
1-x2
的定義域為M,則∁RM為( 。
A、(-∞,-1)
B、[-1,1]
C、(-∞,-1)∪(1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
x2
,x<-
1
2
ln(x+1),x≥-
1
2
,g(x)=x2-4x-4,設(shè)b為實數(shù),若存在實數(shù)a使f(a)+f(b)=0,則b的取值范圍( 。
A、[-1,5]
B、(-1,5)
C、(-∞,-1)∪(5,+∞)
D、(-∞,-1]∪[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(wx+φ)(w>0,|φ|<
π
2
)在某一個周期的圖象時,列表并填入的部分數(shù)據(jù)如表:
xx1
1
3
x2x3
10
3
wx+φ0
π
2
π
2
Asin(wx+φ)0
3
0-
3
0
(1)請寫出上表的x1,x2,x3,并直接寫出函數(shù)的解析式;
(2)設(shè)g(x)=
3
f(x)+f(x-1),當(dāng)x∈[0,4]時,求g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=log2(x2-2ax+3)在區(qū)間(-∞,1]內(nèi)單調(diào)遞減,則a的取值范圍是( 。
A、[1,+∞)
B、(1,+∞)
C、[1,2)
D、[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
1+2i
3-4i
(i為虛數(shù)單位),則|
.
z
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2

(Ⅰ)求目標(biāo)函數(shù)z=x-2y的值域;
(Ⅱ)若目標(biāo)函數(shù)z=λx+2y僅在點(1,0)處取得最小值,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
10-m
+
y2
m-2
=1長軸在x軸上,若焦距為4,則m等于(  )
A、4B、5C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x-
π
4
)

(1)求函數(shù)y=f(x)的對稱軸方程;
(2)求此函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案