【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差x/℃ | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;
(2) 若由線性回歸方程得到的估計數(shù)據(jù)與4月份所選5天的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的. 請根據(jù)4月7日,4月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,并判定所得的線性回歸方程是否可靠?
參考公式: ,
參考數(shù)據(jù):
【答案】(1) ;(2)見解析.
【解析】試題分析:(1)用列舉法列出所有的基本事件,分析可得“m,n均不小于25”的情況個數(shù),用古典概型公式,計算即可得答案;(2)根據(jù)所給的數(shù)據(jù),先做出, 的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點,根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程,再根據(jù)估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,就認(rèn)為得到的線性回歸方程是可靠的,則根據(jù)求得的結(jié)果和所給的數(shù)據(jù)進行比較,即可得到所求的方程是可靠的.
試題解析:(1)所有的基本事件為(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共10個.
設(shè)“m,n均不小于25”為事件A,則事件A包含的基本事件為(25,30),(25,26),(30,26),共3個,故由古典概型概率公式得P(A)=.
(2) 由題意得 且.
∴ ,
∴關(guān)于的線性回歸方程,
且 當(dāng)時, ;
當(dāng)時, ;
當(dāng)時, ;
當(dāng)時, ;
當(dāng)時, .
∴所得到的線性回歸方程是可靠的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某學(xué)校高三年級共800名男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160);第二組[160,165)、…、第八組[190,195],下圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.
(1)估計這所學(xué)校高三年級全體男生身高180cm以上(含180cm)的人數(shù);
(2)求第六組、第七組的頻率并補充完整頻率分布直方圖(如需增加刻度請在縱軸上標(biāo)記出數(shù)據(jù),并用直尺作圖);
(3)由直方圖估計男生身高的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于n∈N* , 若數(shù)列{xn}滿足xn+1﹣xn>1,則稱這個數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實數(shù)m的取值范圍;
(Ⅱ)是否存在首項為﹣1的等差數(shù)列{an}為“K數(shù)列”,且其前n項和Sn滿足 ?若存在,求出{an}的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列{an}是“K數(shù)列”,數(shù)列 不是“K數(shù)列”,若 ,試判斷數(shù)列{bn}是否為“K數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若存在成立,則稱的不動點.如果函數(shù)
有且只有兩個不動點0,2,且
(1)求函數(shù)的解析式;
(2)已知各項不為零的數(shù)列,求數(shù)列通項;
(3)如果數(shù)列滿足,求證:當(dāng)時,恒有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,梯形中,∥,,, ,將沿對角線折起.設(shè)折起后點的位置為,并且平面 平面.給出下面四個命題:
①;②三棱錐的體積為;③ 平面;
④平面平面.其中正確命題的序號是( )
A. ①② B. ③④ C. ①③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級成功,否則晉級失。M分100分).
(1)求圖中a的值;
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級成功”與性別有關(guān)?
晉級成功 | 晉級失敗 | 合計 | |
男 | 16 | ||
女 | 50 | ||
合計 |
(參考公式:K2= ,其中n=a+b+c+d)
P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為X,求X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(滿分12分)學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計 | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
(Ⅰ)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
(Ⅱ)請說明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?
參考公式:,
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),點P位于兩平行直線l1、l2兩側(cè),且P到l1 , l2的距離分別為1,3,點M,N分別在l1 , l2上,| + |=8,則 的最大值為( )
A.15
B.12
C.10
D.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com