【題目】已知橢圓C: =1的離心率為 ,焦距為2,右焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)在x軸上是否存在定點(diǎn)M,使得 為定值?若存在,求出定值和定點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】
(1)解:由題意可得2c=2,e= =

可得c=1,a= ,b= =1,

即有橢圓的方程為 +y2=1


(2)解:在x軸上假設(shè)存在定點(diǎn)M(m,0),使得 為定值.

若直線的斜率存在,設(shè)AB的斜率為k,F(xiàn)(1,0),

由y=k(x﹣1)代入橢圓方程x2+2y2=2,

可得(1+2k2)x2﹣4k2x+2k2﹣2=0,

x1+x2= ,x1x2=

y1y2=k2(x1﹣1)(x2﹣1)=k2[x1x2+1﹣(x1+x2)]

=k2 +1﹣ )=﹣ ,

=(x1﹣m)(x2﹣m)+y1y2=x1x2+m2﹣m(x1+x2)+y1y2

= +m2﹣m = ,

欲使得 為定值,則2m2﹣4m+1=2(m2﹣2),

解得m= ,

此時(shí) = ﹣2=﹣

當(dāng)AB斜率不存在時(shí),令x=1,代入橢圓方程,可得y=±

由M( ,0),可得 ,符合題意.

故在x軸上存在定點(diǎn)M( ,0),使得 為定值﹣


【解析】(1)由題意可得c=1,運(yùn)用離心率公式可得a= ,由a,b,c的關(guān)系可得b=1,進(jìn)而得到橢圓方程;(2)在x軸上假設(shè)存在定點(diǎn)M(m,0),使得 為定值.若直線的斜率存在,設(shè)AB的斜率為k,F(xiàn)(1,0),由y=k(x﹣1)代入橢圓方程,運(yùn)用韋達(dá)定理和向量數(shù)量積的坐標(biāo)表示,結(jié)合恒成立思想,即可得到定點(diǎn)和定值;檢驗(yàn)直線AB的斜率不存在時(shí),也成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù);命題q:當(dāng)x∈[ ,2]時(shí),函數(shù)f(x)=x+ 恒成立,如果p∨q為真命題,p∧q為假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,且

1)求證:平面平面;

2)設(shè)的中點(diǎn),判斷并證明在線段上是否存在點(diǎn),使平面;若存在,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為1的正方形 沿 軸滾動(dòng)(向右為順時(shí)針,向左為逆時(shí)針).設(shè)頂點(diǎn) 的軌跡方程是,則關(guān)于的最小正周期在其兩個(gè)相鄰零點(diǎn)間的圖像與x軸所圍區(qū)域的面積S的正確結(jié)論是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AM過定點(diǎn)P(1,0),且與直線x=﹣1相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩點(diǎn),且 =0,求證:直線AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從裝有個(gè)紅球和個(gè)黒球的口袋內(nèi)任取個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是( )
A.至少有一個(gè)黒球與都是黒球
B.至少有一個(gè)黑球與都是紅球
C.至少有一個(gè)黒球與至少有個(gè)紅球
D.恰有個(gè)黒球與恰有個(gè)黒球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 是定義在區(qū)間(﹣1,1)上的奇函數(shù),且f(2)=
(1)確定函數(shù)f(x)的解析式;
(2)用定義法證明f(x)在區(qū)間(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017省息一中第七次適應(yīng)性考已知函數(shù)),且的導(dǎo)數(shù)為.

(Ⅰ)若是定義域內(nèi)的增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)若方程有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下統(tǒng)計(jì)資料:

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由資料知,y對(duì)x呈線性相關(guān)關(guān)系,試求:
(Ⅰ)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+
(Ⅲ)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
(參考數(shù)據(jù):2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

同步練習(xí)冊答案