設(shè)數(shù)列{}滿足:a1=2,對一切正整數(shù)n,都有
(1)探討數(shù)列{}是否為等比數(shù)列,并說明理由;
(2)設(shè)

(1)是,理由見解析;(2)證明過程詳見解析.

解析試題分析:本題主要考查等比數(shù)列的定義、等比數(shù)列的證明、數(shù)學(xué)歸納法、放縮法等數(shù)學(xué)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力和計算能力.第一問,通過對已知表達式的移項,變形可得出數(shù)列的通項,可以用等比數(shù)列的定義證明也可以用數(shù)學(xué)歸納法證明;第二問,將第一問的結(jié)論代入,得到表達式,法一:利用放縮法和裂項相消法證明,法二:利用數(shù)列的累加法和放縮法證明.
試題解析:⑴由,
∴對一切,可知是首項為,公比為的等比數(shù)列. 5分
(通過歸納猜想,使用數(shù)學(xué)歸納法證明的,亦應(yīng)給分)
(2)由(1)知                      6分
證一:
                              10分
12分
證二:∵ ≥(僅當時等號成立),故此,10分
從而, 12分
考點:1.數(shù)學(xué)歸納法;2.累加法;3.放縮法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知非零向量a,b,且a⊥b,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,已知,,(,).
(1)當,時,分別求的值,判斷是否為定值,并給出證明;
(2)求出所有的正整數(shù),使得為完全平方數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列計算由此推測出的計算公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn)以下四個不等式都是正確的:
;

;

請你觀察這四個不等式:
(1)猜想出一個一般性的結(jié)論(用字母表示);
(2)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145.
(1)求數(shù)列{bn}的通項公式bn
(2)設(shè)數(shù)列{an}的通項an=loga(其中a>0且a≠1).記Sn是數(shù)列{an}的前n項和,試比較Snlogabn+1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列{an}中,a1=1,an+1n∈N,求a2,a3a4
并猜想數(shù)列的通項公式,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

“無理數(shù)是無限小數(shù),而是無限小數(shù),所以是無理數(shù)!
這個推理是          _推理(在“歸納”、“類比”、“演繹”中選擇填空)

查看答案和解析>>

同步練習(xí)冊答案