【題目】已知正四棱柱的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,過(guò)點(diǎn)作平面與正四棱柱的三條側(cè)棱,,分別交于,,,且,若多面體和多面體的體積比為3∶5,則截面的周長(zhǎng)為_________.
【答案】10
【解析】
由已知可得四邊形菱形,過(guò)分別作,垂足分別為連,可得,根據(jù)已知可得多面體的體積,且等于四棱柱的體積,進(jìn)而求出,即可求解.
在正四棱柱中,平面平面,
平面平面,平面平面,
同理,所以四邊形為平行四邊形,因?yàn)?/span>,
所以,故四邊形菱形,過(guò)分別作,
垂足分別為連,得,因?yàn)?/span>,
所以,所以,又,
所以多面體為正四棱柱,且,
所以多面體的體積為正四棱柱的體積為,
又因?yàn)檎睦庵?/span>的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,
所以正四棱柱的體積為16,
又因?yàn)槎嗝骟w和多面體的體積比為3∶5,
所以多面體的體積為,
,故截面的周長(zhǎng)為.
故答案為:10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校打算在長(zhǎng)為1千米的主干道一側(cè)的一片區(qū)域內(nèi)臨時(shí)搭建一個(gè)強(qiáng)基計(jì)劃高校咨詢和宣傳臺(tái),該區(qū)域由直角三角形區(qū)域(為直角)和以為直徑的半圓形區(qū)域組成,點(diǎn)(異于,)為半圓弧上一點(diǎn),點(diǎn)在線段上,且滿足.已知,設(shè),且.初步設(shè)想把咨詢臺(tái)安排在線段,上,把宣傳海報(bào)懸掛在弧和線段上.
(1)若為了讓學(xué)生獲得更多的咨詢機(jī)會(huì),讓更多的省內(nèi)高校參展,打算讓最大,求該最大值;
(2)若為了讓學(xué)生了解更多的省外高校,貼出更多高校的海報(bào),打算讓弧和線段的長(zhǎng)度之和最大,求此時(shí)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an>0,Sn2=an+12﹣λSn+1,其中λ為常數(shù).
(1)證明:Sn+1=2Sn+λ;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列{an}為等比數(shù)列,若存在,求出λ;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知離心率為的橢圓的左頂點(diǎn)為,左焦點(diǎn)為,及點(diǎn),且、、成等比數(shù)列.
(1)求橢圓的方程;
(2)斜率不為的動(dòng)直線過(guò)點(diǎn)且與橢圓相交于、兩點(diǎn),記,線段上的點(diǎn)滿足,試求(為坐標(biāo)原點(diǎn))面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(I)討論的單調(diào)性;
(II)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,如圖,分別交軸正半軸于點(diǎn).射線分別交于點(diǎn),動(dòng)點(diǎn)滿足直線與軸垂直,直線與軸垂直.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)作直線交曲線與點(diǎn),射線與點(diǎn),且交曲線于點(diǎn).問(wèn):的值是否是定值?如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的多面體中,平面平面,四邊形為邊長(zhǎng)為2的菱形, 為直角梯形,四邊形為平行四邊形,且, , .
(1)若, 分別為, 的中點(diǎn),求證: 平面;
(2)若, 與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,為其左焦點(diǎn),在橢圓上.
(1)求橢圓的方程;
(2)若是橢圓上不同的兩點(diǎn),以為直徑的圓過(guò)原點(diǎn),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com