分析 由函數(shù)f(x)=$\frac{1}{3}{x^3}+\frac{3}{2}{x^2}$-x+3在(x1,x2)有且僅有一個(gè)極值點(diǎn),得到f'(x)=x2+3x-1在(x1,x2)有且僅有一解,根據(jù)零點(diǎn)存在定理即可求出a的范圍.
解答 解:∵2x2+3x-1=0的一非零實(shí)根是x1,ax2+3x-1=0(a≠0)的一非零實(shí)根是x2,
∵f(x)=$\frac{1}{3}{x^3}+\frac{3}{2}{x^2}$-x+3,
∴f'(x)=x2+3x-1,
∵函數(shù)f(x)=$\frac{1}{3}{x^3}+\frac{3}{2}{x^2}$-x+3在(x1,x2)有且僅有一個(gè)極值點(diǎn)
∴f'(x)=x2+3x-1在(x1,x2)有且僅有一解,
∴f′(x1)•f′(x2)=(x12+3x1-1)(x22+3x2-1)
=(2x12+3x1-1-x12)[ax22+3x2-1-(a-1)x22]=-(1-a)x12x22≤0,
∴1-a≥0,
∴a≤1,
又△=9+4a≥0,
∴$a≥-\frac{9}{4}$,
∴$-\frac{9}{4}≤a≤1$,
∵a≠0,
∴a的取值范圍為[-$\frac{9}{4}$,0)∪(0,1],
故答案為:[-$\frac{9}{4}$,0)∪(0,1],
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)和函數(shù)的極值的關(guān)系以及函數(shù)零點(diǎn)存在定理,考查了學(xué)生的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 54 | B. | 162 | C. | 54+18$\sqrt{3}$ | D. | 162+18$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2π+8\sqrt{2}+2$ | B. | $2π+8\sqrt{2}+1$ | C. | $π+8\sqrt{2}+1$ | D. | $π+8\sqrt{2}+2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | ||
C. | 2個(gè) | D. | a的值不同時(shí)零點(diǎn)的個(gè)數(shù)不同 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽六安一中高一上國(guó)慶作業(yè)二數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)和分別是上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( )
A.是偶函數(shù) B.是奇函數(shù)
C. 是偶函數(shù) D.是奇函數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com