設(shè)x≥1,y≥1,證明:x+y+
1
xy
1
x
+
1
y
+xy
分析:直接利用分析法,通過(guò)移項(xiàng)變形,轉(zhuǎn)化為基本不等式,即可證明不等式成立.
解答:證明:要證x+y+
1
xy
1
x
+
1
y
+xy
,
只需證明
1
xy
-
1
x
-
1
y
≤xy-x-y
,
只需證明(1-
1
x
)(1-
1
y
)≤(1-x)(1-y)
=(x-1)(y-1),
只需證明1-
1
x
≤x-1;1-
1
y
≤y-1,
即證x+
1
x
≥2,y+
1
y
≥2,(x≥1,y≥1)這是均值不等式,
所以x≥1,y≥1,x+y+
1
xy
1
x
+
1
y
+xy
得證.
點(diǎn)評(píng):本題考查分析法證明不等式的方法,注意分析法的證明步驟,考查邏輯推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•湖北模擬)設(shè)A、B分別是x軸,y軸上的動(dòng)點(diǎn),P在直線AB上,且
AP
=
3
2
PB
,|
AB
|=2+
3

(1)求點(diǎn)P的軌跡E的方程;
(2)已知E上定點(diǎn)K(-2,0)及動(dòng)點(diǎn)M、N滿足
KM
KN
=0,試證:直線MN必過(guò)x軸上的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

設(shè)a,b,x,yR,a2+b2=1,x2+y2=1, 試證:|ax+by|≤1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

設(shè)a,b,x,yR,a2+b2=1,x2+y2=1, 試證:|ax+by|≤1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問(wèn),建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年湖北省“黃岡中學(xué)、黃石二中、華師一附中、荊州中學(xué)、孝感高中、襄樊四中、襄樊五中、鄂南高中”八校高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)A、B分別是x軸,y軸上的動(dòng)點(diǎn),P在直線AB上,且=,||=2+
(1)求點(diǎn)P的軌跡E的方程;
(2)已知E上定點(diǎn)K(-2,0)及動(dòng)點(diǎn)M、N滿足=0,試證:直線MN必過(guò)x軸上的定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案