7.若直線l:y=kx+1與橢圓$\frac{x^2}{2}+{y^2}$=1交于M,N兩點,且|MN|=$\frac{{4\sqrt{2}}}{3}$,求直線l的方程.

分析 將直線代入橢圓方程,通過消元轉(zhuǎn)化為一元二次方程,利用根與系數(shù)之間的關系,利用弦長公式求直線的斜率,從而得直線方程.

解答 解:設直線l與橢圓的交點坐標為M(x1,y1),N(x2,y2),
∴$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,
由消去y得消去y得(1+2k2)x2+4kx=0,
所以x1+x2=-$\frac{4k}{1+2{k}^{2}}$,x1x2=0,由|MN|=$\frac{4\sqrt{2}}{3}$,得(x1-x22+(y1-y22=$\frac{32}{9}$,
∵y1=kx1+1,y2=kx2+1,
∴y1-y2=k(x1+x2),
∴(1+k2)(x1-x22=$\frac{32}{9}$,即(1+k2)[(x1+x22-4x1x2]=$\frac{32}{9}$,
∴(1+k2)(-$\frac{4k}{1+2{k}^{2}}$),化簡得k4+k2-2=0,
解得k2=1,∴k=±1,
∴所求直線l的方程是y=x+1或y=-x+1.

點評 本題主要考查直線與橢圓相交時,利用弦長公式求直線方程,綜合性較強,運算量較大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知O為坐標原點,拋物線C:y2=nx(n>0)在第一象限內(nèi)的點P(2,t)到焦點的距離為$\frac{5}{2}$,C在點P處的切線交x軸于點Q,直線l1經(jīng)過點Q且垂直于x軸.
(1)求線段OQ的長;
(2)設不經(jīng)過點P和Q的動直線l2:x=my+b交C交點A和B,交l1于點E,若直線PA,PB的斜率依次成等差數(shù)列,試問:l2是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.能夠保證直線a∥平面β的條件是( 。
A.b?β,a∥bB.a∥b∥c,b?β,c?β
C.a?β,b?β,a∥bD.b?β,A、B∈a,C、D∈b,AC=BD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知奇函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),當x>0時,f(x)=ln(|x-1|+1),則函數(shù)f(x)的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知集合A={x|ax2-3x+1=0,a∈R},若A中只有一個元素,求a的取值范圍.
(2)集合A={x|x2-6x+5<0},C={x|3a-2<x<4a-3},若C⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.執(zhí)行程序框圖,則最后輸出的i=9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設等比數(shù)列{an}的前n項和為Sn,且S3=$\frac{7}{3}$,a2=$\frac{2}{3}$,a1<a2,則數(shù)列{nan}的前n項和為Tn=$\frac{(n-1)•{2}^{n}+1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設首項為正數(shù)的等比數(shù)列{an}的前n項和為80,它的前2n項和為6 560,且前n項中數(shù)值最大的項為54,則此數(shù)列的第n項an=2•3n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.(1)已知f(x+1)=x2-3x+2,求f(x)的解析式.
(2)已知f(x)=x2-2kx-8在[1,4]上具有單調(diào)性,求k的范圍.

查看答案和解析>>

同步練習冊答案