定義在上的函數(shù)同時(shí)滿(mǎn)足以下條件:
①在上是減函數(shù),在上是增函數(shù);②是偶函數(shù);
③在處的切線(xiàn)與直線(xiàn)垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè),求函數(shù)在上的最小值.
解:(Ⅰ). . …………….…….…………. . …………….…1分
由題意知即解得 . …………………4分
所以函數(shù)的解析式為. . …………….…….……5分
(Ⅱ), .
令得,所以函數(shù)在遞減,在遞增. . ……7分
當(dāng)時(shí),在單調(diào)遞增,. . ………9分
當(dāng)時(shí),即時(shí),
在單調(diào)遞減,在單調(diào)遞增,. . ……………10分
當(dāng)時(shí),即時(shí),
在單調(diào)遞減, . …………….…….12分
綜上,在上的最小值 . ………13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)分14分)已知定義在上的函數(shù)同時(shí)滿(mǎn)足:①對(duì)任意,都有②當(dāng)時(shí),,試解決下列問(wèn)題: (Ⅰ)求在時(shí),的表達(dá)式;(Ⅱ)若關(guān)于的方程在上有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍;(Ⅲ)若對(duì)任意,關(guān)于的不等式都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年遼寧省五校協(xié)作體高三上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
定義在上的函數(shù)同時(shí)滿(mǎn)足以下條件:
①在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②是偶函數(shù);
③在x=0處的切線(xiàn)與直線(xiàn)y=x+2垂直.
(1)求函數(shù)=的解析式;
(2)設(shè)g(x)=,若存在實(shí)數(shù)x∈[1,e],使<,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省高三第三階段(12月)文科考試數(shù)學(xué)試卷(解析版) 題型:解答題
(滿(mǎn)分14分) 定義在上的函數(shù)同時(shí)滿(mǎn)足以下條件:
①在上是減函數(shù),在上是增函數(shù);②是偶函數(shù);
③在處的切線(xiàn)與直線(xiàn)垂直.
(1)求函數(shù)的解析式;
(2)設(shè),求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省淮北市高三4月第二次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題
定義在上的函數(shù)同時(shí)滿(mǎn)足以下條件:
① 在上是減函數(shù),在上是增函數(shù);② 是偶函數(shù);③ 在處的切線(xiàn)與直線(xiàn)垂直.
(1)求函數(shù)的解析式;
(2)設(shè),若存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com