已知點(diǎn)P為橢圓上異于左、右頂點(diǎn)的任意一點(diǎn),F(xiàn)1,F(xiàn)2是左、右焦點(diǎn),連接PF1,PF2,作D PF1F2的旁切圓(與線段PF2,F(xiàn)1P延長(zhǎng)線及F1F2延長(zhǎng)線均相切),其圓心為,則動(dòng)圓圓心的軌跡所在曲線是

[  ]

A.直線

B.

C.橢圓

D.雙曲線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
1
2
,一條準(zhǔn)線方程為x=4.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過(guò)點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M,設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,離心率為
1
2
,點(diǎn)P是橢圓上異于頂點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)P作橢圓的切線l,交y軸于點(diǎn)A,直線l′過(guò)點(diǎn)P且垂直于l,交y軸于點(diǎn)B、
(1)求橢圓的方程.
(2)試判斷以AB為直徑的圓能否經(jīng)過(guò)定點(diǎn)?若能,求出定點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,焦點(diǎn)在x軸上的橢圓的離心率為
3
2
,上頂點(diǎn)A(0,1),下頂點(diǎn)為B,已知定直線l:y=2,若點(diǎn)P是橢圓上異于點(diǎn)A、B的任意一點(diǎn),連接AP并延長(zhǎng)交直線l于點(diǎn)M,連接PB并延長(zhǎng)交直線 l 于點(diǎn)M,
(1)求MN的最小值;
(2)證明以MN為直徑的圓恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A1,A2分別為橢圓
y2
4
+
x2
3
=1
的下頂點(diǎn)和上頂點(diǎn),F(xiàn)為橢圓的下焦點(diǎn),P為橢圓上異于A1,A2點(diǎn)的任意一點(diǎn),直線A1P,A2P分別交直線l:y=m(m<-2)于M,N點(diǎn)
(1)當(dāng)點(diǎn)P位于y軸右側(cè),且PF∥l時(shí),求直線A1M的方程;
(2)是否存在m值,使得以MN為直徑的圓過(guò)F點(diǎn)?若存在加以證明,若不存在,請(qǐng)說(shuō)明理由;
(3)由(2)問(wèn)所得m值,求線段MN最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案