【題目】已知a,b,c分別是△ABC內(nèi)角A,B,C的對邊,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB;
(Ⅱ)設(shè)B=90°,且a= ,求△ABC的面積.

【答案】解:(I)∵sin2B=2sinAsinC, 由正弦定理可得: >0,
代入可得(bk)2=2akck,
∴b2=2ac,
∵a=b,∴a=2c,
由余弦定理可得:cosB= = =
(II)由(I)可得:b2=2ac,
∵B=90°,且a=
∴a2+c2=b2=2ac,解得a=c=
∴SABC= =1.
【解析】(I)sin2B=2sinAsinC,由正弦定理可得:b2=2ac,再利用余弦定理即可得出.(II)利用(I)及勾股定理可得c,再利用三角形面積計算公式即可得出.
【考點精析】根據(jù)題目的已知條件,利用正弦定理的定義和余弦定理的定義的相關(guān)知識可以得到問題的答案,需要掌握正弦定理:;余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1 , x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)如果f(4)=1,f(x﹣1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )=
(1)確定函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解下列不等式:
(1)9x+3x<6(3x﹣1);
(2)log (2x+1) (x2﹣2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= +lnx,則(
A.x=2為f(x)的極大值點??
B.x=2為f(x)的極小值點
C.x= 為f(x)的極大值點??
D.x= 為f(x)的極小值點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y關(guān)于t的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘估計公式分別為: = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: (a>b>0)的上頂點為P(0,1),過E的焦點且垂直長軸的弦長為1.若有一菱形ABCD的頂點A、C在橢圓E上,該菱形對角線BD所在直線的斜率為﹣1.
(1)求橢圓E的方程;
(2)當(dāng)直線BD過點(1,0)時,求直線AC的方程;
(3)當(dāng)∠ABC= 時,求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣2x+c,且f(x)>0的解集是
(1)求f(2)的最小值及f(2)取最小值時f(x)的解析式;
(2)在f(2)取得最小值時,若對于任意的x>2,f(x)+4≥m(x﹣2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案