已知函數(shù) 的圖象過點(0, ),最小正周期為 ,且最小值為-1.
(1)求函數(shù)的解析式.
(2)若 ,的值域是 ,求m的取值范圍.

(1);(2) 

解析試題分析:(1)根據(jù)余弦函數(shù)的性質求出最大值A,再利用周期公式求出參數(shù),最后根據(jù)三角函數(shù)值求出的值即可.(2)由題意求出的取值范圍為,再由已知條件可確定,最后解之即可.
試題解析:(1)由函數(shù)的最小值為-1,可得A=1,因為最小正周期為 ,所以 =3.可得,又因為函數(shù)的圖象過點(0, ),所以,而,所以 ,
.
(2)由,可知,因為,且cos =-1,,由余弦曲線的性質的,,得,即.
考點:(1)余弦函數(shù)的性質和圖象;(2)余弦函數(shù)性質的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導函數(shù),F(x)=f(x)f′(x)+f2(x)
(Ⅰ)求F(x)的最小正周期及單調區(qū)間;
(Ⅱ)求函數(shù)F(x)在上的值域;
(Ⅲ)若f(x)=2f′(x),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的最小正周期和最值;
(2)求函數(shù)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

的圖象關于直線對稱,其中
(1)求的解析式;
(2)將的圖象向左平移個單位,再將得到的圖象的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變)后得到的圖象;若函數(shù)的圖象與的圖象有三個交點且交點的橫坐標成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)寫出函數(shù)f(x)的最小正周期及單調遞增區(qū)間;
(2)當時,函數(shù)f(x)的最大值與最小值的和為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為坐標原點,向量,,點滿足.
(Ⅰ)記函數(shù),討論函數(shù)的單調性,并求其值域;
(Ⅱ)若三點共線,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)圖像的對稱中心;
(Ⅱ)求函數(shù)在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),若的最大值為1.
(1)求的值,并求的單調遞增區(qū)間;
(2)在中,角、、的對邊、,若,且,試判斷三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的最小值和最小正周期;
(Ⅱ)設的內角、的對邊分別為、、,滿足,,求、的值.

查看答案和解析>>

同步練習冊答案