已知函數(shù)yAsin(ωxφ)+k(A>0,ω>0)的最大值為4,最小值為0,最小正周期為,直線x是其圖象的一條對(duì)稱軸,則下面各式中符合條件的解析式為 (  )
A.y=4sinB.y=2sin+2
C.y=2sin+2D.y=2sin+2
D
由函數(shù)yAsin(ωxφ)+k的最大值為4,最小值為0,可知k=2,A=2,由函數(shù)的最小正周期為,可知,可得ω=4,由直線x是其圖象的一條對(duì)稱軸,可知4×φkπ+,k∈Z,從而φkπ-,k∈Z,故滿足題意的是y=2sin+2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

把函數(shù)y=3sin2x的圖象向左平移個(gè)單位得到圖像的函數(shù)解析是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象經(jīng)過點(diǎn).
(1)求實(shí)數(shù)的值;
(2)設(shè),求函數(shù)的最小正周期與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的最小正周期和值域;
(2)若函數(shù)的圖象過點(diǎn).求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=sin2x+2cosx(≤x≤)的最大值與最小值分別為(  )
A.最大值為,最小值為-
B.最大值為,最小值為-2
C.最大值為2,最小值為-
D.最大值為2,最小值為-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=cos(2x+φ)(-π≤φ≤π)的圖象向右平移個(gè)單位后,與函數(shù)y=sin的圖象重合,則φ=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a=(5cos x,cos x),b=(sin x,2cos x),設(shè)函數(shù)f(x)=a·b+|b|2.
(1)當(dāng)∈時(shí),求函數(shù)f(x)的值域;
(2)當(dāng)x時(shí),若f(x)=8,求函數(shù)f的值;
(3)將函數(shù)yf(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的縱坐標(biāo)向下平移5個(gè)單位,得到函數(shù)yg(x)的圖象,求函數(shù)g(x)的表達(dá)式并判斷奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)f(x)=2sin 的圖象向右平移φ(φ>0)個(gè)單位,再將圖象上每一點(diǎn)橫坐標(biāo)縮短到原來的倍,所得圖象關(guān)于直線x對(duì)稱.則φ的最小正值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)f(x)=sin2x--.
(1)若x∈[,],求函數(shù)f(x)的最值及對(duì)應(yīng)的x的值.
(2)若不等式[f(x)-m]2<1在x∈[,]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案