【題目】已知命題p:(x+1)(x-5)≤0,命題q:1-mx<1+m(m>0).

(1)pq的充分條件,求實(shí)數(shù)m的取值范圍;

(2)m=5,如果pq有且僅有一個(gè)真命題,求實(shí)數(shù)x的取值范圍.

【答案】(1)(4,+∞).(2)[-4,-1)(5,6)..

【解析】分析:(1)由題意,現(xiàn)求解命題,再根的充分條件,列出不等式組,即可求解實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),命題,根據(jù)中有且僅有一個(gè)為真命題,分類討論,即可求解

詳解: (1)由命題p:(x+1)(x-5)≤0,解得-1≤x≤5..

命題q:1-mx<1+m(m>0).

pq的充分條件,

[-1,5][1-m,1+m),

解得m>4,.

則實(shí)數(shù)m的取值范圍為(4,+∞)..

m=5,∴命題q:-4≤x<6.

pq有且僅有一個(gè)為真命題,

∴當(dāng)pq假時(shí),可得解得x..

當(dāng)qp假時(shí),可得

解得-4≤x<-15<x<6..

因此x的取值范圍是[-4,-1)∪(5,6)..

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列中,在直線

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)令,數(shù)列的前n項(xiàng)和為

(ⅰ)求;

(ⅱ)是否存在整數(shù)λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與函數(shù)相鄰兩支曲線的交點(diǎn)的橫坐標(biāo)分別為,,且有,假設(shè)函數(shù)的兩個(gè)不同的零點(diǎn)分別為,,若在區(qū)間內(nèi)存在兩個(gè)不同的實(shí)數(shù),,與,調(diào)整順序后,構(gòu)成等差數(shù)列,則的值為( )

A. B.

C. 或不存在D. 或不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角,的對(duì)邊分別為,,,且滿足.

(1)求角的大;

(2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,試求當(dāng)時(shí),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).(12分)
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查.
(。┰囌f(shuō)明上述監(jiān)控生產(chǎn)過(guò)程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得 = =9.97,s= = ≈0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
用樣本平均數(shù) 作為μ的估計(jì)值 ,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值 ,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查?剔除( ﹣3 +3 )之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若集合A={x|log4x≤ },B={x|(x+3)( x﹣1)≥0},則A∩(RB)=(
A.(0,1]
B.(0,1)
C.[1,2]
D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),正數(shù)滿足,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣),F(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績(jī),得到莖葉圖:

)依莖葉圖判斷哪個(gè)班的平均分高?

)現(xiàn)班高等數(shù)學(xué)成績(jī)不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?/span>86分的同學(xué)至少有一個(gè)被抽中的概率;

)學(xué)校規(guī)定:成績(jī)不低于85分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)?

甲班

乙班

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

下面臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:其中

查看答案和解析>>

同步練習(xí)冊(cè)答案