在△OAB中如圖所示,,,M、N在分別OA,OB上,且有,(0<λ<1),,(0<μ<1),設(shè)AN與BM交于P.試用a,b表示

答案:
解析:

解答:,設(shè)

則λa+m(b-λa)=μb+n(a-μb),

∴(λ-mλ-n)a=(μ-nμ-m)B.

又a、b向量不共線,∴λ-mλ-n=μ-nμ-m=0,

代入整理得


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在△OAB中,OA>OB,OC=OB,設(shè)
OA
=
a
OB
=
b
,若
AC
=λ•
AB
,則實數(shù)λ的值為( 。精英家教網(wǎng)
A、
a
•(
a
-
b
)  
|
a
-
b
|
B、
a
•(
a
-
b
)  
|
a
-
b
|
2
C、
a
2
-
b
2
|
a
-
b
|
D、
a
2
-
b
2
|
a
-
b
|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=4,
點M是棱SB的中點,N是OC上的點,且ON:NC=1:3,以O(shè)C,OA,OS所在直線
建立空間直角坐標(biāo)系O-xyz.
(1)求異面直線MN與BC所成角的余弦值;
(II)求MN與面SAB所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直角梯形OABC中,∠COA=∠OAB=
π2
,OA=OS=AB=1,OC=2,點M是棱SB的中點,N是OC上的點,且ON:NC=1:3.
(1)求異面直線MN與BC所成的角;
(2)求MN與面SAB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面四邊形ABED中,O在線段AD上,且OA=1,OD=2,△OAB,△ODE都是正三角形.將四邊形ABED沿AD翻折后,使點B落在點C位置,點E落在點F位置,且F點在平面ABED上的射影恰為線段OD的中點(即垂線段的垂足點),所得多面體ABEDFC,如圖所示
(1)求棱錐F-OED的體積;             
(2)證明:BC∥EF.

查看答案和解析>>

同步練習(xí)冊答案