分析:題干錯誤:且f(
=
-2). 應(yīng)該是:且f(
)=
-2.
(1)根據(jù)f(x)的解析式可得f(
)=
-
tanα•
=
-2,求得tanα=
,結(jié)合 α∈(0,π),求得 α 的值.
(2)由(1)得,f(x)=2sin(x-
)-2,可得函數(shù)y=f(x+α)=f(x+
)=2sin(x+
-
)-2=2sin(x+
)-2.再由
≤x≤π,根據(jù)正弦函數(shù)的定義域和值域,求得
函數(shù)y=f(x+α)的值域.
解答:解:(1)因為f(x)=2sin(x+
)-
tanα•cos
2,∴f(
)=2sin(
+)-
tanα•
cos2=
-
tanα•
=
-2,
所以,tanα=
,又 α∈(0,π),故 α=
.
(2)由(1)得,f(x)=2sin(x+
)-
tanα•cos
2=2sin(x+
)-4
cos2=
sinx+cosx-2(1+cosx)=2(
sinx-
cosx)-2=2sin(x-
)-2,
所以,y=f(x+α)=f(x+
)=2sin(x+
-
)-2=2sin(x+
)-2.
因為
≤x≤π,所以
≤x+
≤
,∴-
≤sin(x+
)≤
,∴-3≤2sin(x-
)-2≤
-2,
因此,函數(shù)y=f(x+α)的值域為[-3,
-2].
點評:本題主要考查三角函數(shù)的恒等變換及化簡求值,復(fù)合三角函數(shù)的單調(diào)性,正弦函數(shù)的定義域和值域,屬于中檔題.