相關(guān)習(xí)題
 0  261193  261201  261207  261211  261217  261219  261223  261229  261231  261237  261243  261247  261249  261253  261259  261261  261267  261271  261273  261277  261279  261283  261285  261287  261288  261289  261291  261292  261293  261295  261297  261301  261303  261307  261309  261313  261319  261321  261327  261331  261333  261337  261343  261349  261351  261357  261361  261363  261369  261373  261379  261387  266669 

科目: 來(lái)源: 題型:

【題目】中,,給出滿足的條件,就能得到動(dòng)點(diǎn)的軌跡方程,下表給出了一些條件及方程:

條件

方程

周長(zhǎng)為

面積為

中,

則滿足條件①,②,的軌跡方程依次為

A. B. C. D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).

(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,

求直線l的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE;

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】直線與曲線有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表.其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)公式為:弧田面積=(弦+2.弧田(如圖),由圓弧和其所對(duì)弦所圍成,公式中指圓弧所對(duì)弦長(zhǎng),等于半徑長(zhǎng)與圓心到弦的距離之差.

按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積與其實(shí)際面積之間存在誤差.現(xiàn)有圓心角為,弦長(zhǎng)等于9米的弧田.

1)計(jì)算弧田的實(shí)際面積;

2)按照《九章算術(shù)》中弧田面積的經(jīng)驗(yàn)公式計(jì)算所得結(jié)果與(1)中計(jì)算的弧田實(shí)際面積相差多少平方米?(結(jié)果保留兩位小數(shù))

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知是等差數(shù)列的前項(xiàng)和,且,則下列結(jié)論錯(cuò)誤的是

A. B. C. D. 是遞減數(shù)列

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),,.

(1)求證:平面BCD;

(2)求異面直線AB與CD所成角的余弦值;

(3)求點(diǎn)E到平面ACD的距離。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在三棱錐中,的中點(diǎn),平面,垂足落在線段上,的重心,已知,,,.

1)證明:平面

2)求異面直線所成角的余弦值;

3)設(shè)點(diǎn)在線段上,使得,試確定的值,使得二面角為直二面角.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知某盒子中共有個(gè)小球,編號(hào)為號(hào)至號(hào),其中有個(gè)紅球、個(gè)黃球和個(gè)綠球,這些球除顏色和編號(hào)外完全相同.

1)若從盒中一次隨機(jī)取出個(gè)球,求取出的個(gè)球中恰有個(gè)顏色相同的概率;

2)若從盒中逐一取球,每次取后立即放回,共取次,求恰有次取到黃球的概率;

3)若從盒中逐一取球,每次取后不放回,記取完黃球所需次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點(diǎn)

(1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端

時(shí)即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時(shí)甲乙兩人之間的距離;

(2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請(qǐng)將甲

乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案