相關(guān)習題
 0  366341  366349  366355  366359  366365  366367  366371  366377  366379  366385  366391  366395  366397  366401  366407  366409  366415  366419  366421  366425  366427  366431  366433  366435  366436  366437  366439  366440  366441  366443  366445  366449  366451  366455  366457  366461  366461 

科目: 來源: 題型:

【題目】如圖,公路MN為東西走向,在點M北偏東36.5°方向上,距離5千米處是學校A;在點M北偏東45°方向上距離千米處是學校B.(參考數(shù)據(jù):,).

1)求學校AB兩點之間的距離

2)要在公路MN旁修建一個體育館C,使得AB兩所學校到體育館C的距離之和最短,求這個最短距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】某網(wǎng)店正在熱銷一款電子產(chǎn)品,其成本為10/件,銷售中發(fā)現(xiàn),該商品每天的銷售量y(件)與銷售單價x(元/件)之間存在如圖所示的關(guān)系:

1)請求出yx之間的函數(shù)關(guān)系式;

2)該款電子產(chǎn)品的銷售單價為多少元時,每天銷售利潤最大?最大利潤是多少元;

3)由于武漢爆發(fā)了“新型冠狀病毒”疫情,該網(wǎng)店店主決定從每天獲得的利潤中抽出300元捐贈給武漢,為了保證捐款后每天剩余利潤不低于450元,如何確定該款電子產(chǎn)品的銷售單價?

查看答案和解析>>

科目: 來源: 題型:

【題目】廣元市某中學舉行了“禁毒知識競賽”,王老師將九年級(1)班學生成績劃分為AB、CD、E五個等級,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題:

1)求九年級(1)班共有多少名同學?

2)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中的“C”所對應的圓心角度數(shù);

3)成績?yōu)?/span>A類的5名同學中,有2名男生和3名女生;王老師想從這5名同學中任選2名同學進行交流,請用列表法或畫樹狀圖的方法求選取的2名同學都是女生的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知O為對角線AC的中點,過O的一條直線交AD于點E,交BC于點F

1)求證:;

2)若,的面積為2,求的面積.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,均為等邊三角形,邊長分別為,B、C、D三點在同一條直線上,則下列結(jié)論正確的________________.(填序號)

為等邊三角形 CM平分

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,的兩條互相垂直的直徑,點P從點O出發(fā),沿的路線勻速運動,設(單位:度),那么y與點P運動的時間(單位:秒)的關(guān)系圖是(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】2019年某中學舉行的冬季陽徑運動會上,參加男子跳高的15名運動員的成績?nèi)绫硭荆?/span>

成績(m

1.80

1.50

1.60

1.65

1.70

1.75

人數(shù)

1

2

4

3

3

2

這些運動員跳高成績的中位數(shù)和眾數(shù)分別是(

A.B.

C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,⊙O的半徑為1,A,B為⊙O外兩點,AB=1.給出如下定義:平移線段AB,得到⊙O的弦分別為點AB的對應點),線段長度的最小值稱為線段AB到⊙O的“平移距離”.

1)如圖,平移線段AB到⊙O的長度為1的弦,則這兩條弦的位置關(guān)系是 ;在點中,連接點A與點 的線段的長度等于線段AB到⊙O的“平移距離”;

2)若點A,B都在直線上,記線段AB到⊙O的“平移距離”為,求的最小值;

3)若點A的坐標為,記線段AB到⊙O的“平移距離”為,直接寫出的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】中,∠C=90°ACBC,DAB的中點.E為直線上一動點,連接DE,過點DDFDE,交直線BC于點F,連接EF

1)如圖1,當E是線段AC的中點時,設,求EF的長(用含的式子表示);

2)當點E在線段CA的延長線上時,依題意補全圖2,用等式表示線段AE,EF,BF之間的數(shù)量關(guān)系,并證明.


查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,為拋物線上任意兩點,其中

1)若拋物線的對稱軸為,當為何值時,

2)設拋物線的對稱軸為.若對于,都有,求的取值范圍.

查看答案和解析>>

同步練習冊答案