科目: 來源: 題型:
【題目】“牟合方蓋”是由我國古代數(shù)學(xué)家劉徽首先發(fā)現(xiàn)并采用的一種用于計算球體體積的方法,“牟合方蓋”是由兩個圓柱分別從縱橫兩個方向嵌入一個正方體時兩圓柱公共部分形成的幾何體,如圖所示的幾何體是可以形成“牟合方蓋”的一種模型,它的主視圖、左視圖、俯視圖依次是( 。
A.(2)、(4)、(1)B.(3)、(1)、(2)
C.(1)、(4)、(2)D.(3)、(4)、(1)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線交x軸于,兩點,與y軸交于點C,AC,BC.M為線段OB上的一個動點,過點M作軸,交拋物線于點P,交BC于點Q.
(1)求拋物線的表達(dá)式;
(2)過點P作,垂足為點N.設(shè)M點的坐標(biāo)為,請用含m的代數(shù)式表示線段PN的長,并求出當(dāng)m為何值時PN有最大值,最大值是多少?
(3)試探究點M在運動過程中,是否存在這樣的點Q,使得以A,C,Q為頂點的三角形是等腰三角形.若存在,請求出此時點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在中,,CD是中線,,一個以點D為頂點的45°角繞點D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點分別為點E、F,DF與AE交于點M,DE與BC交于點N.
(1)如圖1,若,求證:;
(2)如圖2,在繞點D旋轉(zhuǎn)的過程中,試證明恒成立;
(3)若,,求DN的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)和的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點.
(1)求反比例函數(shù)的表達(dá)式;
(2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點為,連接,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】2020年,新型冠狀病毒肆虐全球,疫情期間學(xué)生在家進(jìn)行網(wǎng)課學(xué)習(xí)和鍛煉,學(xué)習(xí)和身體健康狀況都有一定的影響.為了解學(xué)生身體健康狀況,某校對學(xué)生進(jìn)行立定跳遠(yuǎn)水平測試.隨機抽取50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表
分組 | 頻數(shù) |
a | |
12 | |
b | |
10 |
學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布直方圖
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中________,________;
(2)樣本成績的中位數(shù)落在________范圍內(nèi);
(3)請把頻數(shù)分布直方圖補充完整;
(4)該校共有1200名學(xué)生,估計該學(xué)校學(xué)生立定跳遠(yuǎn)成績在范圍內(nèi)的有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】歐拉(Euler,1707年~1783年)為世界著名的數(shù)學(xué)家、自然科學(xué)家,他在數(shù)學(xué)、物理、建筑、航海等領(lǐng)域都做出了杰出的貢獻(xiàn).他對多面體做過研究,發(fā)現(xiàn)多面體的頂點數(shù)(Vertex)、棱數(shù)E(Edge)、面數(shù)F(Flat surface)之間存在一定的數(shù)量關(guān)系,給出了著名的歐拉公式.
(1)觀察下列多面體,并把下表補充完整:
名稱 | 三棱錐 | 三棱柱 | 正方體 | 正八面體 |
圖形 | ||||
頂點數(shù)V | 4 | 6 | 8 | |
棱數(shù)E | 6 | 12 | ||
面數(shù)F | 4 | 5 | 8 |
(2)分析表中的數(shù)據(jù),你能發(fā)現(xiàn)V、E、F之間有什么關(guān)系嗎?請寫出關(guān)系式:____________________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標(biāo);
(3)在對稱軸上是否存在一點M,使△ANM的周長最小.若存在,請求出M點的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,BC>AC,點E在BC上,CE=CA,點D在AB上,連接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足為H.
(1)如圖a,當(dāng)∠ACB=90°時,連接CD,過點C作CF⊥CD交BA的延長線于點F.
①求證:FA=DE;
②請猜想三條線段DE,AD,CH之間的數(shù)量關(guān)系,直接寫出結(jié)論;
(2)如圖b,當(dāng)∠ACB=120°時,三條線段DE,AD,CH之間存在怎樣的數(shù)量關(guān)系?請證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com