科目: 來源: 題型:
【題目】如圖點(diǎn)分別是邊長(zhǎng)為4cm的等邊三角形邊動(dòng)點(diǎn),點(diǎn)從頂點(diǎn)沿向點(diǎn)運(yùn)動(dòng),點(diǎn)同時(shí)從頂點(diǎn)沿向運(yùn)動(dòng),它們的速度都是,當(dāng)?shù)竭_(dá)終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,連接交于點(diǎn)M.
(1)求證:;
(2)點(diǎn)在運(yùn)動(dòng)的過程中,變化嗎?若變化,請(qǐng)說明理由,若不變,則求出它的度數(shù);
(3)當(dāng)為何值時(shí)是直角三角形?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB、AC分別交于點(diǎn)D、E,DF⊥AC于點(diǎn)F.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(3)若⊙O的半徑為10,sinB=,求陰影部分面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識(shí)了解某廣告牌的高度,已知CD=2m.經(jīng)測(cè)量,得到其它數(shù)據(jù)如圖所示.其中∠CAH=37°,∠DBH=67°,AB=10m,請(qǐng)你根據(jù)以上數(shù)據(jù)計(jì)算GH的長(zhǎng).(參考數(shù)據(jù),,)
查看答案和解析>>
科目: 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護(hù)生態(tài)環(huán)境,A,B兩村準(zhǔn)備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:
村莊 | 清理養(yǎng)魚網(wǎng)箱人數(shù)/人 | 清理捕魚網(wǎng)箱人數(shù)/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費(fèi)用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費(fèi)用各是多少元;
(2)在人均支出費(fèi)用不變的情況下,為節(jié)約開支,兩村準(zhǔn)備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?
查看答案和解析>>
科目: 來源: 題型:
【題目】近兩年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果顯示,支付方式有:A微信.B支付寶.C銀行卡.D其他.該小組選取了某一超市一天之內(nèi)購買者的支付方式進(jìn)行統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了多少名購買者?
(2)補(bǔ)全條形統(tǒng)計(jì)圖:“A微信”支付方式所在扇形的圓心角為 度;
(3)若該超市這一天內(nèi)有2000名購買者,請(qǐng)你估計(jì)B種支付方式的購買者有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】連接正方形四邊的中點(diǎn)所構(gòu)成的正方形,我們稱其原正方形的中點(diǎn)正方形,如圖,已知正方形的中點(diǎn)正方形,再作正方形的中點(diǎn)正方形,這樣不斷下去,第n次所做的中點(diǎn)正方形,若正方形的邊長(zhǎng)為1,若設(shè)中點(diǎn)正方形的面積為,則___________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,E,F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論正確都有( 。﹤(gè).
①QB=QF;②AE⊥BF;③;④;④S四邊形ECFG=2S△BGE
A.5B.4C.3D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與探究
如圖,拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),其對(duì)稱軸與拋物線交于點(diǎn),與軸交于點(diǎn).
(1)求點(diǎn),,的坐標(biāo);
(2)點(diǎn)為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),從點(diǎn)出發(fā),沿射線以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),過點(diǎn)作軸的平行線交拋物線于,兩點(diǎn)(點(diǎn)在點(diǎn)的左邊).設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.
①當(dāng)為何值時(shí),以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形;
②連接,在點(diǎn)運(yùn)動(dòng)的過程中,是否存在點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由;
③點(diǎn)在軸上,點(diǎn)為坐標(biāo)平面內(nèi)一點(diǎn),以線段為對(duì)角線作菱形,當(dāng)時(shí),請(qǐng)直接寫出的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合與實(shí)踐
(1)(探索發(fā)現(xiàn))在中. ,,點(diǎn)為直線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合),過點(diǎn)作交直線于點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.
如圖(1),當(dāng)點(diǎn)在線段上,且時(shí),試猜想:
①與之間的數(shù)量關(guān)系:______;
②______.
(2)(拓展探究)
如圖(2),當(dāng)點(diǎn)在線段上,且時(shí),判斷與之間的數(shù)量關(guān)系及的度數(shù),請(qǐng)說明理由.
(3)(解決問題)
如圖(3),在中,,,,點(diǎn)在射線上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接.當(dāng)時(shí),直接寫出的長(zhǎng).
查看答案和解析>>
科目: 來源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).
三等分任意角問題是數(shù)學(xué)史上一個(gè)著名的問題,直到1837年,數(shù)學(xué)家才證明了“三等分任意角”是不能用尺規(guī)完成的.
在探索中,出現(xiàn)了不同的解決問題的方法
方法一:
如圖(1),四邊形ABCD是矩形,F是DA延長(zhǎng)線上一點(diǎn),G是CF上一點(diǎn),CF與AB交于點(diǎn)E,且∠ACG=∠AGC,∠GAF=∠F,此時(shí)∠ECB=∠ACB.
方法二:
數(shù)學(xué)家帕普斯借助函數(shù)給出一種“三等分銳角”的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標(biāo)系中,邊OB在x軸上,邊OA與函數(shù)y=的圖象交于點(diǎn)P,以點(diǎn)P為圓心,以2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.過點(diǎn)P作x軸的平行線,過點(diǎn)R作y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠AOB,過點(diǎn)P作PH⊥x軸于點(diǎn)H,過點(diǎn)R作RQ⊥PH于點(diǎn)Q,則∠MOB=∠AOB.
(1)在“方法一”中,若∠ACF=40°,GF=4,求BC的長(zhǎng).
(2)完成“方法二”的證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com