科目: 來源: 題型:
【題目】如圖,⊙O是四邊形ABCD的外接圓,對(duì)角線AC與BD相交于點(diǎn)E,且AE=DE,連接AD、CB.
(1)求證:AB=CD;
(2)在不添加任何輔助線的情況下,直接寫出圖中所有的全等三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=AC=4,點(diǎn)D為BC上一點(diǎn),點(diǎn)E為△ABC外一點(diǎn),CE⊥AD,垂足為H,EB⊥BC,BF=EF,∠ADB+∠BDF=135°,則FD的長(zhǎng)為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)C作CF平行于BA交PQ于點(diǎn)F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:平行四邊形ABCD的兩邊AB,AD的長(zhǎng)是關(guān)于x的方程x2﹣mx+﹣=0的兩個(gè)實(shí)數(shù)根.
(1)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);
(2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,BD是邊長(zhǎng)為1的正方形ABCD的對(duì)角線,BE平分∠DBC交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長(zhǎng)線于點(diǎn)G.
(1)求證:△BCE≌△DCF;
(2)求CF的長(zhǎng)。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°.
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請(qǐng)標(biāo)明字母)
①作線段AC的垂直平分線l,交AC于點(diǎn)O;
②連接BO并延長(zhǎng),在BO的延長(zhǎng)線上截取OD,使得OD=OB;
③連接DA、DC.
(2)判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點(diǎn)E,連接BE,將△BCE沿BE折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)F處,則CE的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=ax2+(3b+1)x+b﹣3(a>0),若存在實(shí)數(shù)m,使得點(diǎn)P(m,m)在該拋物線上,我們稱點(diǎn)P(m,m)是這個(gè)拋物線上的一個(gè)“和諧點(diǎn)”.
(1)當(dāng)a=2,b=1時(shí),求該拋物線的“和諧點(diǎn)”;
(2)若對(duì)于任意實(shí)數(shù)b,拋物線上恒有兩個(gè)不同的“和諧點(diǎn)”A、B.
①求實(shí)數(shù)a的取值范圍;
②若點(diǎn)A,B關(guān)于直線y=﹣x﹣(+1)對(duì)稱,求實(shí)數(shù)b的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com