科目: 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍是x≠0的全體實數(shù),如表是y與x的幾組對應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | … | ||
y | … | ﹣ | ﹣ | ﹣ | m | … |
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.下面是小華的探究過程,請補充完整:
(1)從表格中讀出,當自變量是﹣2時,函數(shù)值是 ;
(2)如圖,在平面直角坐標系xOy中,描出了以上表中各對對應(yīng)值為坐標的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(3)在畫出的函數(shù)圖象上標出x=2時所對應(yīng)的點,并寫出m= .
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線:與軸,軸分別交于,兩點,且點,點在軸正半軸上運動,過點作平行于軸的直線.
(1)求的值和點的坐標;
(2)當時,直線與直線交于點,反比例函數(shù)的圖象經(jīng)過點,求反比例函數(shù)的解析式;
(3)當時,若直線與直線和(2)反比例函數(shù)的圖象分別交于點,,當間距離大于等于2時,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】豆豆媽媽用小米運動手環(huán)記錄每天的運動情況,下面是她6天的數(shù)據(jù)記錄(不完整):
(1)4月5日,4月6日,豆豆媽媽沒來得及作記錄,只有手機圖片,請你根據(jù)圖片數(shù)據(jù),幫她補全表格.
(2)豆豆利用自己學(xué)習(xí)的統(tǒng)計知識,把媽媽步行距離與燃燒脂肪情況用如下統(tǒng)計圖表示出來,請你根據(jù)圖中提供的信息寫出結(jié)論: .(寫一條即可)
(3)豆豆還幫媽媽分析出步行距離和卡路里消耗數(shù)近似成正比例關(guān)系,豆豆媽媽想使自己的卡路里消耗數(shù)達到250千卡,預(yù)估她一天步行距離為 公里.(直接寫出結(jié)果,精確到個位)
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題:尺規(guī)作圖:確定圖1中所在圓的圓心.
已知:.
求作:所在圓的圓心.
曈曈的作法如下:如圖2,
(1)在上任意取一點,分別連接,;
(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.
老師說:“曈曈的作法正確.”
請你回答:曈曈的作圖依據(jù)是_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當小帶和小路的車相距50 km時,t=或t=.其中正確的結(jié)論有( )
A. ①②③④B. ①②④
C. ①②D. ②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】每個人都應(yīng)懷有對水的敬畏之心,從點滴做起,節(jié)水、愛水,保護我們生活的美好世界.某地近年來持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計量不會發(fā)生改變的是( 。
用水量x(噸) | 3 | 4 | 5 | 6 | 7 |
頻數(shù) | 1 | 2 | 5 | 4﹣x | x |
A. 平均數(shù)、中位數(shù) B. 眾數(shù)、中位數(shù) C. 平均數(shù)、方差 D. 眾數(shù)、方差
查看答案和解析>>
科目: 來源: 題型:
【題目】問題提出:
如圖1,在等邊△ABC中,AB=9,⊙C半徑為3,P為圓上一動點,連結(jié)AP,BP,求AP+BP的最小值
(1)嘗試解決:
為了解決這個問題,下面給出一種解題思路,通過構(gòu)造一對相似三角形,將BP轉(zhuǎn)化為某一條線段長,具體方法如下:(請把下面的過程填寫完整)
如圖2,連結(jié)CP,在CB上取點D,使CD=1,則有
又∵∠PCD=∠
△ ∽△
∴
∴PD=BP
∴AP+BP=AP+PD
∴當A,P,D三點共線時,AP+PD取到最小值
請你完成余下的思考,并直接寫出答案:AP+BP的最小值為 .
(2)自主探索:
如圖3,矩形ABCD中,BC=6,AB=8,P為矩形內(nèi)部一點,且PB=4,則AP+PC的最小值為 .(請在圖3中添加相應(yīng)的輔助線)
(3)拓展延伸:
如圖4,在扇形COD中,O為圓心,∠COD=120°,OC=4.OA=2,OB=3,點P是上一點,求2PA+PB的最小值,畫出示意圖并寫出求解過程.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖1,在平行四邊形ABCD中,點E1,E2是AB三等分點,點F1,F2是CD三等分點,E1F1,E2F2分別交AC于點G1,G2,求證:AG1=G1G2=G2C.
(2)如圖2,由64個邊長為1的小正方形組成的一個網(wǎng)格圖,線段MN的兩個端點在格點上,請用一把無刻度的尺子,畫出線段MN三等分點P,Q.(保留作圖痕跡)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某航天飛機在地球表面點P的正上方A處,從A處觀測到地球上的最遠點Q,即AQ是⊙O的切線,若∠QAP=α,地球半徑為R,
求:(1)航天飛機距地球表面的最近距離AP的長;
(2)P、Q兩點間的地面距離,即的長.(注:本題最后結(jié)果均用含α,R的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com