科目: 來源: 題型:
【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個(gè)結(jié)論中,正確的是( 。
A. 若點(diǎn)(3,6)在其圖象上,則(﹣3,6)也在其圖象上
B. 當(dāng)k>0時(shí),y隨x的增大而減小
C. 過圖象上任一點(diǎn)P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關(guān)于直線y=﹣x成軸對稱
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖,Rt△ABC 中,∠ACB=90°,BC=8,AC=6,點(diǎn) D 在邊 BC 上(不 與點(diǎn) B、C 重合),點(diǎn) E 在邊 BC 的延長線上,∠DAE=∠BAC,點(diǎn) F 在線段 AE 上,∠ACF=∠B.設(shè) BD=x.
(1)若點(diǎn) F 恰好是 AE 的中點(diǎn),求線段 BD 的長;
(2)若 y=,求 y 關(guān)于 x 的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)△ADE 是以 AD 為腰的等腰三角形時(shí),求線段 BD 的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy(如圖1),一次函數(shù)的圖像與y軸交于點(diǎn)A,點(diǎn)M在正比例函數(shù)的圖像上,且MO=MA.二次函數(shù)y=x2+bx+c的圖像經(jīng)過點(diǎn)A、M.
(1)求線段AM的長;
(2)求這個(gè)二次函數(shù)的解析式;
(3)如果點(diǎn)B在y軸上,且位于點(diǎn)A下方,點(diǎn)C在上述二次函數(shù)的圖像上,點(diǎn)D在一次函數(shù)的圖像上,且四邊形ABCD是菱形,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在△ABC中 AB = AC,點(diǎn) D為 BC邊的中點(diǎn),點(diǎn) F在邊 AB上,點(diǎn)E在 線段 DF的延長線上,且∠BAE =∠BDF,點(diǎn) M在線段 DF上,且∠EBM =∠C.
(1)求證: EB BD BM AB ;
(2)求證:AE⊥BE.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠生產(chǎn)一種火爆的網(wǎng)紅電子產(chǎn)品,每件產(chǎn)品成本 16 元,工廠將該產(chǎn)品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià) y(元)與一次性批發(fā)量 x(件)(x為正整數(shù))之間滿 足如圖所示的函數(shù)關(guān)系.
(1)直接寫出 y與 x之間所滿足的函數(shù)關(guān)系式,并寫出自變量 x的取值范圍;
(2)若一次性批發(fā)量不低于 20 且不超過 60 件時(shí),求獲得的利潤 w 與 x 的函數(shù) 關(guān)系式,同時(shí)當(dāng)批發(fā)量為多少件時(shí),工廠獲利最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC 中,∠ABC=90°,AB=6,BC=8.點(diǎn) M、N分別在邊 AB、 BC上,沿直線 MN將△ABC折疊,點(diǎn) B落在點(diǎn) P處,如果 AP∥BC且 AP=4,那么 BN=________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在 RtABC 中, ACB 90 , AC 6 , BC 12 ,點(diǎn) D 在邊 BC 上,點(diǎn) E在線段 AD 上, EF AC 于點(diǎn) F , EG EF 交 AB 于點(diǎn) G .若 EF EG ,則 CD 的長為____________
查看答案和解析>>
科目: 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣2mx+m2+2m+2的圖象與x軸有兩個(gè)交點(diǎn).
(1)當(dāng)m=﹣2時(shí),求二次函數(shù)的圖象與x軸交點(diǎn)的坐標(biāo);
(2)過點(diǎn)P(0,m﹣1)作直線1⊥y軸,二次函數(shù)圖象的頂點(diǎn)A在直線l與x軸之間(不包含點(diǎn)A在直線l上),求m的范圍;
(3)在(2)的條件下,設(shè)二次函數(shù)圖象的對稱軸與直線l相交于點(diǎn)B,求△ABO的面積最大時(shí)m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了支持大學(xué)生創(chuàng)業(yè),某市政府出臺了一項(xiàng)優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網(wǎng)店,招收5名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營的利潤,逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為4千元,該網(wǎng)店還需每月支付其它費(fèi)用1萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價(jià)x(元)萬件之間的函數(shù)關(guān)系如圖所示.
(1)求該網(wǎng)店每月利潤w(萬元)與銷售單價(jià)x(元)之間的函數(shù)表達(dá)式;
(2)小王自網(wǎng)店開業(yè)起,最快在第幾個(gè)月可還清10萬元的無息貸款?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com