科目: 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+3與x軸交于A,B兩點,與y軸交于點C,其中點A(-1,0).過點A作直線y=x+c與拋物線交于點D,動點P在直線y=x+c上,從點A出發(fā),以每秒個單位長度的速度向點D運動,過點P作直線PQ∥y軸,與拋物線交于點Q,設(shè)運動時間為t(s).
(1)直接寫出b,c的值及點D的坐標(biāo);
(2)點 E是拋物線上一動點,且位于第四象限,當(dāng)△CBE的面積為6時,求出點E 的坐標(biāo);
(3)在線段PQ最長的條件下,點M在直線PQ上運動,點N在x軸上運動,當(dāng)以點D、M、N為頂點的三角形為等腰直角三角形時,請求出此時點N的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】我們不妨約定:如圖①,若點D在△ABC的邊AB上,且滿足∠ACD=∠B(或∠BCD=∠A),則稱滿足這樣條件的點為△ABC邊AB上的“理想點”.
(1)如圖①,若點D是△ABC的邊AB的中點,AC=,AB=4.試判斷點D是不是△ABC邊AB上的“理想點”,并說明理由.
(2)如圖②,在⊙O中,AB為直徑,且AB=5,AC=4.若點D是△ABC邊AB上的“理想點”,求CD的長.
(3)如圖③,已知平面直角坐標(biāo)系中,點A(0,2),B(0,-3),C為x軸正半軸上一點,且滿足∠ACB=45°,在y軸上是否存在一點D,使點A是B,C,D三點圍成的三角形的“理想點”,若存在,請求出點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】 為倡導(dǎo)“低碳生活”,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實物圖.車架檔AC與CD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車架檔AD的長;
(2)求車座點E到車架檔AB的距離.
(結(jié)果精確到1 cm.參考數(shù)據(jù): sin75°="0.966," cos75°=0.259,tan75°=3.732)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形OABC為平行四邊形,B、C在⊙O上,A在⊙O外,sin∠OCB=.
(1)求證:AB與⊙O相切;
(2)若BC=10cm,求圖中陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是半圓O的直徑,AB=10,過點A的直線交半圓于點C,且sin∠CAB=,連結(jié)BC,點D為BC的中點.已知點E在射線AC上,△CDE與△ACB相似,則線段AE的長為________;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,拋物線y = ax2+bx-3經(jīng)過A、B、C三點,己知點A(-3,0)、C (1, 0).
(1)求此拋物線的解析式.
(2)點P是直線AB下方的拋物線上一動點(不與A、B重合),
①過點F作x軸的垂線,垂足為D,交直線AB于點E,動點P在什么位置時,PE最大,求 出此時P點的坐標(biāo).
②如圖2,連接AP.以AP為邊作圖示一側(cè)的正方形APMN,當(dāng)它恰好有一個頂點落在拋物 線對稱軸上時,求出對應(yīng)的P點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在矩形ABCD中AB=4, BC=8,點E、F是BC、AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形.
(2)如果四邊形AECF是菱形,求這個菱形的邊長.
(3)如圖2,在(2)的條件下,取AB、CD的中點G、H,連接DG、BH, DG分別交AE、CF于點M、Q, BH分別交AE、CF于點N、P,求點P到BC的距離并直接寫出四邊形MNPQ的面積。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=2BC, E為AD的中點,連接BD,BE,∠ABD=90°
(1)求證:四邊形BCDE為菱形.
(2)連接AC,若AC⊥BE, BC=2,求BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一個不透明的布袋中,有三個除顏色外其它均相同的小球,其中兩個黑色,一個紅色.
(1)請用表格或樹狀圖求出:一次隨機取出2個小球,顏色不同的概率.
(2)如果老師在布袋中加入若干個紅色小球.然后小明通過做實驗的方式猜測加入的小球數(shù),小 明每次換出一個小球記錄下慎色并放回,實驗數(shù)據(jù)如下表:
實驗次數(shù) | 100 | 200 | 300 | 400 | 500 | 1000 |
摸出紅球 | 78 | 147 | 228 | 304 | 373 | 752 |
請你幫小明算出老師放入了多少個紅色小球.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com