科目: 來源: 題型:
【題目】若凸四邊形的兩條對角線所夾銳角為60°,我們稱這樣的凸四邊形為“完美四邊形”.
(1)①在“平行四邊形、梯形、菱形、正方形”中,一定不是“完美四邊形”的有 ;
②若矩形ABCD是“完美四邊形”,且AB=4,則BC= ;
(2)如圖1,“完美四邊形”ABCD內(nèi)接于⊙O,AC與BD相交于點P,且對角線AC為直徑,AP=1,PC=5,求另一條對角線BD的長;
(3)如圖2,平面直角坐標(biāo)系中,已知“完美四邊形”ABCD的四個頂點A(﹣3,0)、C (2,0),B在第三象限,D在第一象限,AC與BD交于點O,直線BD的斜率為,且四邊形ABCD的面積為15,若二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象同時經(jīng)過這四個頂點,求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)y=a(x﹣h)2+k(a≠0)的圖象是拋物線,定義一種變換,先作這條拋物線關(guān)于原點對稱的拋物線y′,再將得到的對稱拋物線y′向上平移m(m>0)個單位,得到新的拋物線ym,我們稱ym叫做二次函數(shù)y=a(x﹣h)2+k(a≠0)的m階變換.
(1)已知:二次函數(shù)y=2(x+2)2+1,它的頂點關(guān)于原點的對稱點為 ,這個拋物線的2階變換的表達(dá)式為 .
(2)若二次函數(shù)M的6階變換的關(guān)系式為y6′=(x﹣1)2+5.
①二次函數(shù)M的函數(shù)表達(dá)式為 .
②若二次函數(shù)M的頂點為點A,與x軸相交的兩個交點中左側(cè)交點為點B,在拋物線y6′=(x﹣1)2+5上是否存在點P,使點P與直線AB的距離最短,若存在,求出此時點P的坐標(biāo).
(3)拋物線y=﹣3x2﹣6x+1的頂點為點A,與y軸交于點B,該拋物線的m階變換的頂點為點C.若△ABC是以AB為腰的等腰三角形,請直按寫出m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D是半圓AB的三等分點,過點C作AD延長線的垂線CE,垂足為E.
(1)求證:CE是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
(3)若弦CN過△ABC的內(nèi)心點M,MN=,求CN.
查看答案和解析>>
科目: 來源: 題型:
【題目】某出租汽車公司計劃購買A型和B型兩種節(jié)能汽車,若購買A型汽車4輛,B型汽車7輛,共需310萬元;若購買A型汽車10輛,B型汽車15輛,共需700萬元.
(1)A型和B型汽車每輛的價格分別是多少萬元?
(2)該公司計劃購買A型和B型兩種汽車共10輛,費用不超過285萬元,且A型汽車的數(shù)量少于B型汽車的數(shù)量,請你給出費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.
(1)表中m= ,n= ;
(2)請在圖中補全頻數(shù)直方圖;
(3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在 分?jǐn)?shù)段內(nèi);
(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1,以下結(jié)論:①abc>0;②3a+c>0;③m為任意實數(shù),則有a(m2+1)+bm≥0;④若(﹣2,y1),(5,y2)是拋物線上的兩點,則y1<y2,正確的有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′),連接CC′,若∠CC′B′=33°,則∠B的大小是( )
A. 33° B. 45° C. 57° D. 78°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線過A(1,0)、B(﹣3,0),C(0,﹣3)三點,直線AD交拋物線于點D,點D的橫坐標(biāo)為﹣2,點P(m,n)是線段AD上的動點,過點P的直線垂直于x軸,交拋物線于點Q.
(1)求直線AD及拋物線的解析式;
(2)求線段PQ的長度l與m的關(guān)系式,m為何值時,PQ最長?
(3)在平面內(nèi)是否存在整點(橫、縱坐標(biāo)都為整數(shù))R,使得P、Q、D、R為頂點的四邊形是平行四邊形?若存在,求出點R的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知∠AOB=60°,在∠AOB的平分線OM上有一點C,∠DCE=120°,當(dāng)∠DCE的頂點與點C重合,它的兩條邊分別與直線OA、OB相交于點D、E.
(1)當(dāng)∠DCE繞點C旋轉(zhuǎn)到CD與OA垂直時(如圖1),請猜想OE+OD與OC的數(shù)量關(guān)系,并說明理由;
(2)由(圖1)的位置將∠DCE繞點C逆時針旋轉(zhuǎn)θ角(0<θ<90°),線段OD、OE與OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com