科目: 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),以原點O為圓心,1為半徑作圓,點P在直線上運動,過點P作該圓的一條切線,切點為A,則PA的最小值為
A. 3 B. 2 C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某購物商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元;為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),每件襯衫每降價1元,商場平均每天可多售出2件.
(1)每天銷售這種襯衫的盈利要達到1200元,則每件襯衫應(yīng)降價多少元?
(2)每件襯衫降價多少元時,商場每天盈利最多?利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點O是等邊三角形ABC內(nèi)的一點,∠BOC=150°,將△BOC繞點C按順時針旋轉(zhuǎn)得到△ADC,連接OD,OA.
(1)求∠ODC的度數(shù);
(2)若OB=4,OC=5,求AO的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=x-3交x軸于點B,交y軸于點C,拋物線經(jīng)過點A(-1,0),B,C三點,點F在y軸負半軸上,OF=OA.
(1)求拋物線的解析式;
(2)在第一象限的拋物線上存在一點P,滿足S△ABC=S△PBC,請求出點P的坐標(biāo);
(3)點D是直線BC的下方的拋物線上的一個動點,過D點作DE∥y軸,交直線BC于點E,①當(dāng)四邊形CDEF為平行四邊形時,求D點的坐標(biāo);
②是否存在點D,使CE與DF互相垂直平分?若存在,請求出點D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.
原題:如圖①,點分別在正方形的邊上,,連接,則,試說明理由.
(1)思路梳理
因為,所以把繞點逆時針旋轉(zhuǎn)90°至,可使與 重合.因為,所以,點共線.
根據(jù) ,易證 ,得.請證明.
(2)類比引申
如圖②,四邊形中,,,點分別在邊上,.若都不是直角,則當(dāng)
(3)聯(lián)想拓展
如圖③,在中,,點均在邊上,且.猜想應(yīng)滿足的等量關(guān)系,并寫出證明過程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某小龍蝦養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了20000kg小龍蝦,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設(shè)每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求a和b的值;
(2)設(shè)這批小龍蝦放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價為y元/kg.根據(jù)以往經(jīng)驗可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng)0≤t≤50和50<t≤100時,y與t的函數(shù)關(guān)系式;
②設(shè)將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤為W元,求當(dāng)t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點O,CD是弦,且CD⊥AB于點F,連接AD,過點B的直線與線段AD的延長線交于點E,且∠E=∠ACF.
(1)若CD=2, AF=3,求⊙O的周長;
(2)求證:直線BE是⊙O的切線.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于拋物線.
(1)它與x軸交點的坐標(biāo)為 ,與y軸交點的坐標(biāo)為 ,頂點坐標(biāo)為 ;
(2)在坐標(biāo)系中利用描點法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列問題:若關(guān)于x的一元二次方程(t為實數(shù))在<x<的范圍內(nèi)有解,則t的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com