科目: 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A(﹣3,m+8),B(n,﹣6)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點(diǎn),且A,B兩點(diǎn)的橫坐標(biāo)分別是2和4,則△OAB的面積是_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】“高低杠”是女子體操特有的一個(gè)競(jìng)技項(xiàng)目,其比賽器材由高、低兩根平行杠及若干支架組成,運(yùn)動(dòng)員可根據(jù)自己的身高和習(xí)慣在規(guī)定范圍內(nèi)調(diào)節(jié)高、低兩杠間的距離.某興趣小組根據(jù)高低杠器材的一種截面圖編制了如下數(shù)學(xué)問(wèn)題,請(qǐng)你解答.
如圖所示,底座上A,B兩點(diǎn)間的距離為90cm.低杠上點(diǎn)C到直線(xiàn)AB的距離CE的長(zhǎng)為155cm,高杠上點(diǎn)D到直線(xiàn)AB的距離DF的長(zhǎng)為234cm,已知低杠的支架AC與直線(xiàn)AB的夾角∠CAE為82.4°,高杠的支架BD與直線(xiàn)AB的夾角∠DBF為80.3°.求高、低杠間的水平距離CH的長(zhǎng).(結(jié)果精確到1cm,參考數(shù)據(jù)sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始向點(diǎn)B以2cm/s的速度移動(dòng),點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A以1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(0≤t≤6),那么:
(1)當(dāng)t為何值時(shí),△QAP是等腰直角三角形?
(2)當(dāng)t為何值時(shí),以點(diǎn)Q、A、P為頂點(diǎn)的三角形與△ABC相似?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,OF是∠MON的平分線(xiàn),點(diǎn)A在射線(xiàn)OM上,P,Q是直線(xiàn)ON上的兩動(dòng)點(diǎn),點(diǎn)Q在點(diǎn)P的右側(cè),且PQ=OA,作線(xiàn)段OQ的垂直平分線(xiàn),分別交直線(xiàn)OF、ON交于點(diǎn)B、點(diǎn)C,連接AB、PB.
(1)如圖1,當(dāng)P、Q兩點(diǎn)都在射線(xiàn)ON上時(shí),請(qǐng)直接寫(xiě)出線(xiàn)段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點(diǎn)都在射線(xiàn)ON的反向延長(zhǎng)線(xiàn)上時(shí),線(xiàn)段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請(qǐng)寫(xiě)出證明過(guò)程;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當(dāng)P和Q兩點(diǎn)都在射線(xiàn)ON上移動(dòng)時(shí),k是否存在最小值?若存在,請(qǐng)直接寫(xiě)出k的最小值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)AB=PB;(2)存在;(3)k=0.5.
【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問(wèn)題;
(2)存在.證明方法類(lèi)似(1);
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出當(dāng)BA⊥OM時(shí), 的值最小,最小值為0.5,由此即可解決問(wèn)題;
試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(2)存在,理由:如圖2中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(3)連接BQ.
易證△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴ =,∵∠AOB=30°,∴當(dāng)BA⊥OM時(shí), 的值最小,最小值為0.5,∴k=0.5.
點(diǎn)睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,屬于中考?碱}型.
【題型】解答題
【結(jié)束】
28
【題目】如圖,已知拋物線(xiàn)y=ax2+x+c與x軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線(xiàn)l:y=﹣x﹣4與x軸交于點(diǎn)D,點(diǎn)P是拋物線(xiàn)y=ax2+x+c上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥x軸,垂足為E,交直線(xiàn)l于點(diǎn)F.
(1)試求該拋物線(xiàn)表達(dá)式;
(2)如圖(1),若點(diǎn)P在第三象限,四邊形PCOF是平行四邊形,求P點(diǎn)的坐標(biāo);
(3)如圖(2),過(guò)點(diǎn)P作PH⊥y軸,垂足為H,連接AC.
①求證:△ACD是直角三角形;
②試問(wèn)當(dāng)P點(diǎn)橫坐標(biāo)為何值時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱(chēng)軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則
①二次函數(shù)的最大值為a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)M(﹣2,),頂點(diǎn)坐標(biāo)為N(﹣1,),且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P為直線(xiàn)y=﹣1上的動(dòng)點(diǎn),Q是拋物線(xiàn)線(xiàn)上的動(dòng)點(diǎn),若以A,C,P,Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)在直線(xiàn)AC上是否存在一點(diǎn)Q,使△QBM的周長(zhǎng)最?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過(guò)點(diǎn)A(3,0),交y軸于B,D是頂點(diǎn),求△ABD的面積.
(3)在(2)的條件下,根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】閱讀下列材料,并用相關(guān)的思想方法解決問(wèn)題.材料:為解方程x4﹣x2﹣6=0可將方程變形為(x2)2﹣x2﹣6=0然后設(shè)x2=y,則(x2)2=y2,原方程化為y2﹣y﹣6=0…①
解得y1=﹣2,y2=3,當(dāng)y1=﹣2時(shí),x2=﹣2無(wú)意義,舍去;
當(dāng)y2=3時(shí),x2=﹣3,解得x=±;
所以原方程的解為x1=,x2=﹣;
問(wèn)題:(1)在原方程得到方程①的過(guò)程中,利用 法達(dá)到了降次的目的,體現(xiàn)了 的數(shù)學(xué)思想;
(2)利用以上學(xué)習(xí)到的方法解下列方程(x2+5x+1)(x2+5x+7)=7.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com