科目: 來源: 題型:
正方形ABCD中,E是CD邊上一點,
(1)將△ADE繞點A按順時針方向旋轉,使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 ,∠AFB=∠
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉的方式說明:DQ+BP=PQ
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉的思想說明BM2+DN2=MN2.
查看答案和解析>>
科目: 來源: 題型:
如圖,將一副直角三角形拼放在一起得到四邊形ABCD,其中∠BAC=45°,∠ACD=30°,點E為CD邊上的中點,連接AE,將△ADE沿AE所在直線翻折得到△AD′E,D′E交AC于F點.若AB=6cm.
(1)AE的長為 4 cm;
(2)試在線段AC上確定一點P,使得DP+EP的值最小,并求出這個最小值;
(3)求點D′到BC的距離.
查看答案和解析>>
科目: 來源: 題型:
在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)畫出△ABC關于y軸對稱的△A1B1C1;
(2)畫出△ABC關于原點O成中心對稱的△A2B2C2.
查看答案和解析>>
科目: 來源: 題型:
如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉90°至△DBE后,再把△ABC沿射線平移至△FEG,DE、FG相交于點H.
(1)判斷線段DE、FG的位置關系,并說明理由;
(2)連結CG,求證:四邊形CBEG是正方形.
查看答案和解析>>
科目: 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點A順時針旋轉到位置①可得到點P1,此時AP1=;將位置①的三角形繞點P1順時針旋轉到位置②,可得到點P2,此時AP2=1+;將位置②的三角形繞點P2順時針旋轉到位置③,可得到點P3,此時AP3=2+;…,按此規(guī)律繼續(xù)旋轉,直至得到點P2014為止.則AP2014= .
查看答案和解析>>
科目: 來源: 題型:
如圖,在△ABC中,AB=2,AC=4,將△ABC繞點C按逆時針方向旋轉得到△A′B′C,使CB′∥AB,分別延長AB、CA′相交于點D,則線段BD的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com