(2008•攀枝花)已知:如圖,EF為梯形ABCD的中位線,AD=AN,連接DN交EF于點M,AM的延長線交BC于點H,連接DH、NH
(1)給出以下結(jié)論:
①AH⊥DN;②AD⊥DH;③HM=MN;④DH=NH
你認為正確的結(jié)論是
①④
①④

(2)請任意選擇(1)中的一個正確結(jié)論加以證明.
分析:(1)①④正確;
(2)首先根據(jù)中位線的性質(zhì)可得EF∥AB,進而可得△DEM∽△DAN,再根據(jù)對應(yīng)邊成比例可得到M為DN中點,再有AD=AN,可根據(jù)等腰三角形的性質(zhì)可得AH⊥DN;再根據(jù)線段垂直平分線的性質(zhì)可證出④正確.
解答:解:(1)①④正確;

(2)∵EF為梯形ABCD的中位線,
∴EF∥AB,
∴△DEM∽△DAN,
DE
DA
=
DM
DN
,
∵E為AD中點,
DE
AD
=
1
2

DM
DN
=
1
2
,
∴M為DN中點,
∵AD=AN,
∴AH⊥DN,故①正確;
∵AH⊥DN,M為DN中點,
∴HM是DN的垂直平分線,
∴DH=HN,故④正確.
點評:此題主要考查了梯形的中位線,以及等腰三角形的性質(zhì),線段的垂直平分線,關(guān)鍵是掌握等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2008•攀枝花)從數(shù)字3、4、5中任意抽取兩個數(shù)字組成一個兩位數(shù),則這個數(shù)恰為奇數(shù)的可能性為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•攀枝花)已知⊙O1和⊙O2的半徑分別是方程x2-5x+4=0的兩根,O1O2=3,則兩圓位置關(guān)系為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2008•攀枝花)閱讀下面五個命題,把正確命題的序號全部填在橫線處:
①五角星是中心對稱圖形;
②對角線互相垂直相等的四邊形是正方形;
③菱形四邊中點的連線組成的四邊形是矩形;
④垂直于同一直線的兩條直線互相平行;
⑤在一個確定的等腰三角形底邊上任意的一點(端點除外)到兩腰距離之和是一個定值.
正確命題的序號
③⑤
③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•攀枝花)在向汶川地震災(zāi)區(qū)執(zhí)行空投任務(wù)中,一架飛機在空中沿著水平方向向空投地O處上方直線飛行,飛行員在A點測得O處的俯角為30°,繼續(xù)向前飛行1千米到達B處測得O處的俯角為60°.飛機繼續(xù)飛行0.1千米到達E處進行空投,已知空投物資在空中下落過程中的軌跡是拋物線,若要使空投物資剛好落在O處.
(1)求飛機的飛行高度.
(2)以拋物線頂點E為坐標原點建立直角坐標系,求拋物線的解析式.(所有答案可以用根號表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2008•攀枝花)某校服生產(chǎn)廠家計劃在年底推出80套兩款新校服A和B,預計前期投入資金不少于20900元,但不超過20960元,且所投入資金全部用于兩種校服的研制,其成本和售價如下表:
A B
成本價(元/套) 250 280
售價(元/套) 300 340
(1)該廠家有哪幾種生產(chǎn)新校服的方案可供選擇?
(2)該廠家采用哪種生產(chǎn)方案可以獲得最大的利潤?最大利潤為多少?
(3)經(jīng)市場調(diào)查,年底前每套B款校服售價不會改變,而每套A款校服的售價將會提高m元(m>0),且所生產(chǎn)的兩種校服都可以售完,該廠家又該如何安排生產(chǎn)校服才能獲得最大利潤呢?

查看答案和解析>>

同步練習冊答案