【題目】在平面直角坐標系中,已知拋物線經過A(-3,0),B(0,-3),C(1,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S
關于m的函數(shù)關系式,并求出S的最大值;
(3)若點P是拋物線上的動點,點Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.
【答案】(1)
時,S最大為
(3)(-3,3)或或或(3,-3)
【解析】試題分析:(1)先假設出函數(shù)解析式,利用三點法求解函數(shù)解析式.
(2)設出M點的坐標,利用S=S△AOM+S△OBM﹣S△AOB即可進行解答;
(3)當OB是平行四邊形的邊時,表示出PQ的長,再根據平行四邊形的對邊相等列出方程求解即可;當OB是對角線時,由圖可知點A與P應該重合,即可得出結論.
試題解析:解:(1)設此拋物線的函數(shù)解析式為:y=ax2+bx+c(a≠0),
將A(-3,0),B(0,-3),C(1,0)三點代入函數(shù)解析式得:
解得,所以此函數(shù)解析式為:.
(2)∵M點的橫坐標為m,且點M在這條拋物線上,∴M點的坐標為:(m,),
∴S=S△AOM+S△OBM-S△AOB=×3×(-)+×3×(-m)-×3×3=-(m+)2+,
當m=-時,S有最大值為:S=-.
(3)設P(x,).分兩種情況討論:
①當OB為邊時,根據平行四邊形的性質知PB∥OQ,
∴Q的橫坐標的絕對值等于P的橫坐標的絕對值,
又∵直線的解析式為y=-x,則Q(x,-x).
由PQ=OB,得:|-x-()|=3
解得: x=0(不合題意,舍去),-3, ,∴Q的坐標為(-3,3)或或;
②當BO為對角線時,如圖,知A與P應該重合,OP=3.四邊形PBQO為平行四邊形則BQ=OP=3,Q橫坐標為3,代入y=﹣x得出Q為(3,﹣3).
綜上所述:Q的坐標為:(-3,3)或或或(3,-3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的兩個外角平分線交于點P,則下列結論正確的是( 。
①PA=PC ②BP平分∠ABC ③P到AB,BC的距離相等 ④BP平分∠APC.
A. ①② B. ①④ C. ②③ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】電子跳蚤游戲盤是如圖所示的△ABC,AB=AC=BC=5.如果跳蚤開始時在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1= CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2= AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3= BP2;…;跳蚤按照上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數(shù)),則點P2016與點P2017之間的距離為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“愛我永州”中學生演講比賽中,五位評委分別給甲、乙兩位選手的評分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說法中錯誤的是( )
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產的某種產品每件成本為40元,經市場調查整理出如下信息:
①該產品90天售量(n件)與時間(第x天)滿足一次函數(shù)關系,部分數(shù)據如下表:
時間(第x天) | 1 | 2 | 3 | 10 | … |
日銷售量(n件) | 198 | 196 | 194 | ? | … |
②該產品90天內每天的銷售價格與時間(第x天)的關系如下表:
時間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價格(元/件) | x+60 | 100 |
(1)求出第10天日銷售量;
(2)設銷售該產品每天利潤為y元,請寫出y關于x的函數(shù)表達式,并求出在90天內該產品的銷售利潤最大?最大利潤是多少?(提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本))
(3)在該產品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°, BC∥x軸,拋物線y=ax2-2ax+3經過△ABC的三個頂點,并且與x軸交于點D、E,點A為拋物線的頂點.
(1)求拋物線的解析式;
(2)連接CD,在拋物線的對稱軸上是否存在一點P使△PCD為直角三角形,若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合.若∠CEF=50°,則∠AOF的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線y=﹣2x+b與反比例函數(shù)y=交于點A、B,與x軸交于點C.
(1)若A(﹣3,m)、B(1,n).直接寫出不等式﹣2x+b>的解.
(2)求sin∠OCB的值.
(3)若CB﹣CA=5,求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某景區(qū)的兩個景點A、B處于同一水平地面上、一架無人機在空中沿MN方向水平飛行進行航拍作業(yè),MN與AB在同一鉛直平面內,當無人機飛行至C處時、測得景點A的俯角為45°,景點B的俯角為30°,此時C到地面的距離CD為100米,則兩景點A、B間的距離為__米(結果保留根號).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com