【題目】(1)如圖1,等邊三角形ABC的邊長(zhǎng)為4,兩頂點(diǎn)B、C分別在y軸的正半軸和x軸的正半軸上運(yùn)動(dòng),顯然,當(dāng)OA⊥BC于點(diǎn)D時(shí),頂點(diǎn)A到原點(diǎn)O的距離最大,試求出此時(shí)線段OA的長(zhǎng).
(2)如圖2,在Rt△ACB中,∠ACB=90°,AC=3,BC=4,兩頂點(diǎn)B、C分別在x軸的正半制和y軸的正半軸上運(yùn)動(dòng),求出頂點(diǎn)A到原點(diǎn)O的最大距離.
(3)如圖3,正六邊形ABCDEF的邊長(zhǎng)為4,頂點(diǎn)B、C分別在x軸正半軸和y軸正半軸上運(yùn)動(dòng),直接寫(xiě)出頂點(diǎn)E到原點(diǎn)O的距離的最大值和最小值.
【答案】(1)OA=2+2;(2)2+;(3)2+,4.
【解析】
(1)解直角三角形求出AD、OD即可;
(2)如圖2中,取BC的中點(diǎn)K,連接OK,AK,OA.因?yàn)?/span>OA≤AK+OK,推出O、K、A共線時(shí),OA的值最大;
(3)如圖3中,取BC的中點(diǎn)K,連接OK、EK、OE.因?yàn)?/span>OE≤OK+EK,推出O、K、E共線時(shí),OE的值最大,當(dāng)點(diǎn)C與O重合時(shí),OE的值最小.
(1)如圖1中,
∵△ABC是等邊三角形,
∴AB=BC=AC=4,∠ACD=60°,
∵AD⊥BC,
∴BD=CD,AD=ACsin60°=2,
∴OD=BC=2,
∴OA=2+2.
(2)如圖2中,取BC的中點(diǎn)K,連接OK,AK,OA.
在Rt△BOC中,OK=BC=2,
在Rt△ACK中,AK==,
∵OA≤AK+OK,
∴O、K、A共線時(shí),OA的值最大,最大值為2+.
(3)如圖3中,取BC的中點(diǎn)K,連接OK、EK、OE.
則OK=BC=2,EC=4,∠ECK=90°,
在Rt△ECK中,EK==2,
∵OE≤OK+EK,
∴O、K、E共線時(shí),OE的值最大,最大值為2+2.
當(dāng)點(diǎn)C與O重合時(shí),OE的值最小,最小值為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與兩坐標(biāo)軸分別交于,,三點(diǎn),一次函數(shù)的圖象與拋物線交于,兩點(diǎn).
求點(diǎn),,的坐標(biāo);
當(dāng)兩函數(shù)的函數(shù)值都隨著的增大而增大,求的取值范圍;
當(dāng)自變量滿(mǎn)足什么范圍時(shí),一次函數(shù)值大于二次函數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小芳用畫(huà)正方形的辦法畫(huà)出下列一組圖案,你能按規(guī)律繼續(xù)畫(huà)下去嗎?想想其中有哪些相似圖形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,A(0,3),B(4,0),C(﹣1,﹣1),點(diǎn) P 線段 AB上一動(dòng)點(diǎn),將線段 AB 繞原點(diǎn) O 旋轉(zhuǎn)一周,點(diǎn) P 的對(duì)應(yīng)點(diǎn)為 P′,則 P′C 的最大值為_____,最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D為BC邊上的一點(diǎn),若∠B=36°,AB=AC=BD=2.
(1)求CD的長(zhǎng);
(2)利用此圖求sin18°的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,以AC為斜邊向外作等腰直角三角形COA,已知BC=8,OB=10,則另一直角邊AB的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,ABCO的頂點(diǎn)A,B的坐標(biāo)分別是A(3,0),B(0,2),動(dòng)點(diǎn)P在直線y=x上運(yùn)動(dòng),以點(diǎn)P為圓心,PB長(zhǎng)為半徑的⊙P隨點(diǎn)P運(yùn)動(dòng),當(dāng)⊙P與四邊形ABCO的邊所在直線相切時(shí),P點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的與的部分對(duì)應(yīng)值如下表:
… | 0 | 1 | 3 | … | ||
… | 1 | 3 | 1 | … |
則下列判斷中正確的是( )
A. 拋物線開(kāi)口向上 B. 拋物線與軸交于負(fù)半軸
C. 當(dāng)時(shí), D. 方程的正根在3與4之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com