【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,,AC為直徑,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)若AC=9,CE=3,求CD的長.
【答案】(1)證明見解析;(2)
【解析】分析: (1)根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠DCE=∠BAD,根據(jù)圓周角定理得到∠DCE=∠BAD,證明即可;
(2)證明△DCE∽△ACD,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.
詳解:
(1)證明:∵四邊形ABCD是⊙O內(nèi)接四邊形,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠DCE=180°,
∴∠DCE=∠BAD,
∵=,
∴∠BAD=∠ACD,
∴∠DCE=∠ACD,
∴CD平分∠ACE;
(2)解:∵AC為直徑,
∴∠ADC=90°,
∵DE⊥BC,
∴∠DEC=90°,
∴∠DEC=∠ADC,
∵∠DCE=∠ACD,
∴△DCE∽△ACD,
∴=,即=,
∴CD=3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料.
在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:
已知:如圖①,在△ABC中,∠A=90°.
圖①
求作:⊙P,使得點(diǎn)P在邊AC上,且⊙P與AB,BC都相切.
小軒的主要作法如下:
如圖②,
圖②
(1)作∠ABC的平分線BF,與AC交于點(diǎn)P;
(2)以P為圓心,AP長為半徑作⊙P,則⊙P即為所求.
老師說:“小軒的作法正確.”
請回答:⊙P與BC相切的依據(jù)是 ____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,以為圓心,長為半徑畫弧,分別交、于、兩點(diǎn),連接、,則除外,圖中是等腰三角形的還有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)水池,其底面是邊長為16尺的正方形,一根蘆葦AB生長在它的正中央,高出水面部分BC的長為2尺,如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B′,則這根蘆葦AB的長是( )
A. 15尺B. 16尺C. 17尺D. 18尺
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】松桃孟溪火車站一檢修員某天乘一輛檢修車在筆直的鐵軌上來回檢修,規(guī)定向東為正,從車站出發(fā)到收工時(shí),行走記錄為(單位:千米):+15,-2,-5,-1,+10,-3,-2,-12,+4,+6.
⑴計(jì)算收工時(shí),檢修員在車站的哪一邊,此時(shí),距車站多遠(yuǎn)?
⑵若汽車每千米耗油0.1升,且汽油的價(jià)格為每升6.8元,求這一天檢修員從出發(fā)到收工時(shí)所耗油費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,∠B=30°,O是線段AB上的一個(gè)動點(diǎn),以O為圓心,OB為半徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作直線AC的垂線,垂足為E.
(1)求證:DE是⊙O的切線;
(2)設(shè)OB=x,求∠ODE的內(nèi)部與△ABC重合部分的面積y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·漳州)(滿分8分)漳州市某中學(xué)對全校學(xué)生進(jìn)行文明禮儀知識測試,為了解測試結(jié)果,隨機(jī)抽取部分學(xué)生的成績進(jìn)行分析,將成績分為三個(gè)等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).請你根據(jù)圖中所給的信息解答下列問題:
(1)請將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(2)若“一般”和“優(yōu)秀”均被視為達(dá)標(biāo)成績,則該校被抽取的學(xué)生中有_ ▲ 人達(dá)標(biāo);
(3)若該校學(xué)生有1200人,請你估計(jì)此次測試中,全校達(dá)標(biāo)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+4與x軸交于A(,0)、B兩點(diǎn),與y軸交于C點(diǎn),其對稱軸為直線x=1.
(1)直接寫出拋物線的解析式 :
(2)把線段AC沿x軸向右平移,設(shè)平移后A、C的對應(yīng)點(diǎn)分別為A′、C′,當(dāng)C′落在拋物線上時(shí),求A′、C′的坐標(biāo);
(3)除(2)中的點(diǎn)A′、C′外,在x軸和拋物線上是否還分別存在點(diǎn)E、F,使得以A、C、E、F為頂點(diǎn)的四邊形為平行四邊形,若存在,求出E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com