【題目】甲、乙兩名同學(xué)分別進(jìn)行6次射擊訓(xùn)練,訓(xùn)練成績(單位:環(huán))如下表 對他們的訓(xùn)練成績作如下分析,其中說法正確的是(

A. 他們訓(xùn)練成績的平均數(shù)相同

B. 他們訓(xùn)練成績的中位數(shù)不同

C. 他們訓(xùn)練成績的方差不同

D. 他們訓(xùn)練成績的眾數(shù)不同

【答案】C

【解析】

利用方差的定義、以及眾數(shù)和中位數(shù)的定義分別計算得出答案.

解:∵甲6次射擊的成績從小到大排列為6、7、8、8、910,

∴甲成績的平均數(shù)為

8(環(huán)),中位數(shù)為8(環(huán))、眾數(shù)為8環(huán),

方差為×[682+(7822×(882+(982+(1082]

(環(huán)2),

∵乙6次射擊的成績從小到大排列為:7、7、88、8、9

∴乙成績的平均數(shù)為,中位數(shù)為8(環(huán))、眾數(shù)為8環(huán),

方差為×[2×(723×(82+(92](環(huán)2),

則甲、乙兩人的平均成績不相同、中位數(shù)和眾數(shù)均相同,而方差不相同,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售面向中考生的計數(shù)跳繩,每根成本為20元,銷售的前40天內(nèi)的日銷售量m(根)與時間t(天)的關(guān)系如表.

時間t(天)

1

3

8

10

26

日銷售量m(件)

51

49

44

42

26

40天每天的價格y(元/件)與時間t(天)的函數(shù)關(guān)系式為:y=t+251≤t≤40t為整數(shù));

1)認(rèn)真分析表中的數(shù)據(jù),用所學(xué)過的知識確定m(件)與t(天)之間是滿足一次函數(shù)的關(guān)系還是二次函數(shù)的關(guān)系?并利用這些數(shù)據(jù)求m(件)與t(天)之間得函數(shù)關(guān)系式;

2)請計算40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要建一個面積為150平方米的長方形養(yǎng)雞場,為了節(jié)約材料,雞場一邊靠著原有的一堵墻,墻長為18米,另三邊用籬笆圍成,如籬笆長度為35米,且要求用完。求雞場的長與寬各是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮分別從甲地和乙地同時出發(fā),沿同一條路相向而行,小明開始跑步,中途改為步行,到達(dá)乙地恰好用小亮騎自行車以的速度直接到甲地,兩人離甲地的路程與各自離開出發(fā)地的時間之間的函數(shù)圖象如圖所示,

甲、乙兩地之間的路程為______m,小明步行的速度為______;

求小亮離甲地的路程y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;

求兩人相遇的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,PQ切⊙OE,ACPQC,交⊙OD.

(1)求證:AE平分∠BAC;

(2)AD=2,EC=BAC=60°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋里裝有4個大小、質(zhì)地均相同的乒乓球,每個球上面分別標(biāo)有1,23,4.小林先從布袋中隨機抽取一個乒乓球(不放回去),再從剩下的3個球中隨機抽取第二個乒乓球,記兩次取得乒乓球上的數(shù)字依次為a、b

1)求a、b之積為偶數(shù)的概率;

2)若c5,求長為a、bc的三條線段能圍成三角形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,且AB=AC,點D在弧BC上運動,過點DDEBC,DEAB的延長線于點E,連接AD、BD

1)求證:∠ADB=E;

2)當(dāng)AB=5BC=6時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高爾夫運動員將一個小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時間(s)滿足二次函數(shù)關(guān)系,th的幾組對應(yīng)值如下表所示:

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

1)求ht之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);

2)求小球飛行3s時的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦CD⊥AB,垂足為E,連接OD.

(1)過點C作射線CFBA的延長線于點F,且使得∠ECF=∠AOD;(要求尺規(guī)作圖,不寫作法)

(2)求證:CF⊙O的切線;

(3)若OE:AE=1:2,且AF=6,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案