【題目】父親節(jié)即將到來之際,某商店準備購進、兩種男裝進行銷售,其中每套種男裝的進價比每套種男裝的進價多元用元購進種男裝的數(shù)量是用元購進種男裝數(shù)量的.

(1)求每套種男裝和每套種男裝的進價各是多少元:

(2)若該商店本次購進種男裝的數(shù)量比購進種男裝的數(shù)量的倍還多套,該商店每套種男裝的銷售價格為元,每套種男裝的銷售價格為元,若將本次購進的、兩種男裝全部售出后獲得的利潤不少于元,那么該商店至少需要購進種男裝多少套?

【答案】1)每套種男裝進價為元,每套種男裝進價為元;(2)該商店至少需要購進種男裝.

【解析】

(1)關(guān)鍵語是"其中每套種男裝的進價比每套種男裝的進價多元用元購進種男裝的數(shù)量是用元購進種男裝數(shù)量的.”可根據(jù)此列出方程

2)本題中購進種男裝的數(shù)量比購進種男裝的數(shù)量的倍還多套,該商店每套種男裝的銷售價格為元,每套種男裝的銷售價格為元,若將本次購進的兩種男裝全部售出后獲得的利潤不少于"看得出關(guān)于利潤的不等式方程,組成方程組后得出未知數(shù)的取值范圍,然后根據(jù)取值的不同情況,列出不同的方案

1)解:設(shè)每套種男裝進價為元,則每套種男裝的.

根據(jù)題意

解得

檢驗:經(jīng)檢驗是原方驗程的解.

答:每套種男裝進價為元,每套種男裝進價為.

2)解:設(shè)該商店需要購進種男裝 套,則需要購進種男裝

根據(jù)題意得

解得:

答:該商店至少需要購進種男裝.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】重慶市的重大惠民工程--公租房建設(shè)已陸續(xù)竣工,計劃10年內(nèi)解決低收入人群的住房問題,前6年,每年竣工投入使用的公租房面積單位:百萬平方米,與時間x的關(guān)系是單位:年, x為整數(shù);后4年,每年竣工投入使用的公租房面積單位:百萬平方米,與時間x的關(guān)系是單位:年, x為整數(shù)假設(shè)每年的公租房全部出租完另外,隨著物價上漲等因素的影響,每年的租金也隨之上調(diào),預計,第x年投入使用的公租房的租金單位:元與時間單位:年, x為整數(shù)滿足一次函數(shù)關(guān)系如下表:

50

52

54

56

58

1

2

3

4

5

求出zx的函數(shù)關(guān)系式;

求政府在第幾年投入的公租房收取的租金最多,最多為多少百萬元;

若第6年竣工投入使用的公租房可解決20萬人的住房問題,政府計劃在第10年投入的公租房總面積不變的情況下,要讓人均住房面積比第6年人均住房面積提高,這樣可解決住房的人數(shù)將比第6年減少,求a的值.

參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點落在對角線D′處.若AB=3,AD=4,則ED的長為

A B3 C1 D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在矩形ABCD中,ABAD,對角線AC、BD相交于點O,動點P由點A出發(fā),沿AB→BC→CD向點D運動,設(shè)點P的運動路徑為x,△AOP的面積為y,圖②是y關(guān)于x的函數(shù)關(guān)系圖象,則AB邊的長為( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)閱讀理解

利用旋轉(zhuǎn)變換解決數(shù)學問題是一種常用的方法.如圖1,點P是等邊三角形ABC內(nèi)一點,PA1PB,PC2.求∠BPC的度數(shù).

為利用已知條件,不妨把△BPC繞點C順時針旋轉(zhuǎn)60°得△AP′C,連接PP′,則PP′的長為_____;在△PAP′中,易證∠PAP′90°,且∠PP′A的度數(shù)為_____,綜上可得∠BPC的度數(shù)為_____;

(2)類比遷移

如圖2,點P是等腰RtABC內(nèi)的一點,∠ACB90°,PA2,PB,PC1,求∠APC的度數(shù);

(3)拓展應用

如圖3,在四邊形ABCD中,BC3,CD5,ABACAD.∠BAC2ADC,請直接寫出BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不解方程,判斷下列一元二次方程根的情況:

(1); (2);(3); (4).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,,,,將繞點逆時針旋轉(zhuǎn)得到,連接,過點于點,交于點

1)如圖,

①求證:四邊形是正方形;

②求證:中點;

2)如圖,若,請判斷是否仍然是的中點?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為做好全國文明城市的創(chuàng)建工作,我市交警連續(xù)10天對某路口100“50歲以下行人100“50歲及以上行人中出現(xiàn)交通違章的情況進行了調(diào)查統(tǒng)計,將所得數(shù)據(jù)繪制成如下統(tǒng)計圖.請根據(jù)所給信息,解答下列問題

(1)求這10“50歲及以上行人中每天違章人數(shù)的眾數(shù);

(2)某天中午下班時段經(jīng)過這一路口的“50歲以下行人300人,請估計大約有多少人會出現(xiàn)交通違章行為;

(3)請選擇適當?shù)慕y(tǒng)計量分析“50歲以下行人“50歲以上行人交通違章行為的現(xiàn)并就文明城市創(chuàng)建減少交通違章提出合理建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,⊙O的兩條半徑OAOB,CD的三等分點,OCOD分別與AB相交于點E,F

求證:CDAEBF

查看答案和解析>>

同步練習冊答案