【題目】下列正多邊形中,與正三角形同時(shí)使用,能進(jìn)行密鋪的是(
A.正十二邊形
B.正十邊形
C.正八邊形
D.正五邊形

【答案】A
【解析】解:正三角形的每個(gè)內(nèi)角是60°,正十二邊形每個(gè)內(nèi)角是180°﹣360°÷12=150°, ∵60°+2×150°=360°,
∴與正三角形同時(shí)使用,能進(jìn)行密鋪的是正十二邊形.故選A.
【考點(diǎn)精析】利用平面圖形的鑲嵌對題目進(jìn)行判斷即可得到答案,需要熟知用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做平面圖形的鑲嵌.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2的等邊△ABC中,D為BC的中點(diǎn),E是AC邊上一點(diǎn),則BE+DE的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師想知道某校學(xué)生每天上學(xué)路上要花多少時(shí)間,于是隨機(jī)選取30名同學(xué)每天來校的大致時(shí)間(單位:分鐘)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)表如下:

時(shí)間

5

10

15

20

25

30

35

45

人數(shù)

3

3

6

12

2

2

1

1


(1)寫出這組數(shù)據(jù)的中位數(shù)和眾數(shù);
(2)求這30名同學(xué)每天上學(xué)的平均時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+2的圖象與y軸交于點(diǎn)A,與x軸的正半軸交于點(diǎn)B,OA=2OB.
(1)直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)在所給平面直角坐標(biāo)系內(nèi)畫一次函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的周長為13cm,其中一邊長為5cm,則該等腰三角形的底邊為( 。

A. 5cm B. 4cm C. 5cm或3cm D. 8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)如圖①,△ABC中,點(diǎn)D、E在邊BC上,AE平分∠BAC,AD⊥BC,∠C=40°,∠B=60°,求:①∠CAE的度數(shù);②∠DAE的度數(shù).
(2)如圖②,若把(1)中的條件“AD⊥BC”變成“F為AE延長線上一點(diǎn),且FD⊥BC”,其他條件不變,求出∠DFE的度數(shù).
(3)在△ABC中,AE平分∠BAC,若F為EA延長線上一點(diǎn),F(xiàn)D⊥BC,且∠C=α,∠B=β(β>α),試猜想∠DFE的度數(shù)(用α,β表示),請自己作出對應(yīng)圖形并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩圓的半徑分別是2和3,圓心距是5,則這兩圓的位置關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,現(xiàn)有一張三角形ABC紙片,沿BC邊上的高AE所在的直線翻折,使得點(diǎn)C與BC邊上的點(diǎn)D重合.

(1)填空:△ADC是三角形;
(2)若AB=15,AC=13,BC=14,求BC邊上的高AE的長;
(3)如圖②,若∠DAC=90°,試猜想:BC、BD、AE之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,對角線AC,BD相交于點(diǎn)O.
(1)如圖1,點(diǎn)P是正方形ABCD外一點(diǎn),連接OP,以O(shè)P為一邊,作正方形OPMN,且邊ON與邊BC相交,連接AP,BN.
①依題意補(bǔ)全圖1;
②判斷AP與BN的數(shù)量關(guān)系及位置關(guān)系,寫出結(jié)論并加以證明;

(2)點(diǎn)P在AB延長線上,且∠APO=30°,連接OP,以O(shè)P為一邊,作正方形OPMN,且邊ON與BC的延長線恰交于點(diǎn)N,連接CM,若AB=2,求CM的長(不必寫出計(jì)算結(jié)果,簡述求CM長的過程)

查看答案和解析>>

同步練習(xí)冊答案