16.為解決群眾看病貴的問題,有關(guān)部門決定降低藥價,對某種原價為100元的藥品進(jìn)行連續(xù)兩次降價后為81元.設(shè)平均每次降價的百分率為x,則下列方程正確的是(  )
A.100(1-x)2=81B.81(1-x)2=100C.100(1-2x)=81D.81(1-2x)=100

分析 設(shè)平均每次的降價率為x,則經(jīng)過兩次降價后的價格是100(1-x)2,根據(jù)關(guān)鍵語句“連續(xù)兩次降價后為81元,”可得方程100(1-x)2=81.

解答 解:由題意得:100(1-x)2=81,
故選:A.

點評 此題主要考查求平均變化率的方法.若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.解方程:
(1)x2+x-1=0
(2)(x-2)(x-3)=12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.-2017的絕對值是( 。
A.2017B.-2017C.$\frac{1}{2017}$D.-$\frac{1}{2017}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.單項式-$\frac{2abc}{3}$的系數(shù)和次數(shù)分別是( 。
A.-$\frac{2}{3}$,3B.-$\frac{2}{3}$,1C.-2,3D.-2,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在△ABC中,AB=AC,BC=BD,AD=DE=EB,則∠A的度數(shù)為( 。
A.30°B.45°C.50°D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,拋物線y=-$\frac{1}{2}$(x+1)(x-2k)(k>0)交x軸于A、B(A左B右),交y軸于點C,點D在第一象限拋物線的圖象上,且∠ABD=45°,△BCD的面積為$\frac{15}{2}$.
(1)求拋物線解析式;
(2)點P為第一象限拋物線的圖象上一點,過點P作PH⊥x軸,垂足為H,PH交BD于E.把△PAH沿PH翻折,點A落在BH邊上F點,設(shè)PF交BD于G,若EG=BG,求點P的坐標(biāo);
(3)在(2)的條件下,設(shè)PF交拋物線于N,連接AN,Q在線段AN上,若∠PQG=2∠APQ.求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,點E在CD上,BC與AE交于點F,AB=CB,BE=BD,∠1=∠2.
(1)求證:△ABE≌△CBD;
(2)證明:∠1=∠3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,邊長為4cm的等邊△ABC中,點P、Q分別是邊AB、BC上的動點(端點除外),點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,連接AQ,CP交于點M,在點P,Q運動的過程中.
(1)求證:△ABQ≌△CAP;
(2)∠QMC的大小是否發(fā)生變化?若無變化,求∠QMC的度數(shù);若有變化,請說明理由;
(3)連接PQ,當(dāng)點P,Q運動多少秒時,△PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.下列由左到右的變形,屬于因式分解的是( 。
A.(x+2)(x-2)=x2-4B.x2-4=(x+2)(x-2)
C.x2-4+3x=(x+2)(x-2)+3xD.x2+4x-2=x(x+4)-2

查看答案和解析>>

同步練習(xí)冊答案