【題目】如圖,把一張長,寬的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子(紙板的厚度忽略不計(jì)).

1)要使長方體盒子的底面積為,求剪去的正方形的邊長;

2)你覺得折合而成的長方體盒子的側(cè)面積會不會有更大的情況?如果有,請求出側(cè)面積的最大值和此時剪去的正方形的邊長;如果沒有,請你說明理由.

【答案】(1) ;(2)2cm.

【解析】

1)等量關(guān)系為:(原來長方形的長-2正方形的邊長)×(原來長方形的寬-2正方形的邊長)=48,把相關(guān)數(shù)值代入即可求解;
2)同(1)先用x表示出不同側(cè)面的長,然后根據(jù)矩形的面積將4個側(cè)面的面積相加,得出關(guān)于側(cè)面積和正方形邊長的函數(shù)式,然后根據(jù)函數(shù)的性質(zhì)和自變量的取值范圍來得出側(cè)面積的最大值.

1)設(shè)剪去正方形的邊長為,由題意得

解得(舍去),

∴正方形的邊長為

2)設(shè)剪去正方形的邊長為,側(cè)面積為

,

,當(dāng)時,

∴剪去正方形邊長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,∠BAC120°ABAC2,點(diǎn)DBC邊上(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE30°

1)求證:ABD∽△DCE

2)若BDn0n2),求線段AE的長;(用含n的代數(shù)式表示)

3)當(dāng)ADE是等腰三角形時,請直接寫出AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,B=90°,BC=5,C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個單位長的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(t0.過點(diǎn)DDFBC于點(diǎn)F,連接DE、EF.

1)求證:AE=DF

2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

3)當(dāng)t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段ADAB的比等于( 。

A. 25:24 B. 16:15 C. 5:4 D. 4:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:兩個二次項(xiàng)系數(shù)之和為1,對稱軸相同,且圖象與y軸交點(diǎn)也相同的二次函數(shù)互為友好同軸二次函數(shù).例如:y2x2+4x5的友好同軸二次函數(shù)為y=﹣x22x5

1)請你寫出yx2+x5的友好同軸二次函數(shù);

2)如圖,二次函數(shù)L1yax24ax+1與其友好同軸二次函數(shù)L2都與y軸交于點(diǎn)A,點(diǎn)B、C分別在L1、L2上,點(diǎn)B,C的橫坐標(biāo)均為m0m2)它們關(guān)于L1的對稱軸的對稱點(diǎn)分別為B′,C′,連接BB′B′C′,C′CCB.若a3,且四邊形BB′C′C為正方形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P的坐標(biāo)是a,b,從-2,-1,0,1,2這五個數(shù)中任取一個數(shù)作為a的值,再從余下的四個數(shù)中任取一個數(shù)作為b的值,則點(diǎn)Pa,b在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+4x軸交于A,B兩點(diǎn)(點(diǎn)A在原點(diǎn)左側(cè),點(diǎn)B在原點(diǎn)右側(cè)),與y軸交于點(diǎn)C,已知OA1,OCOB

1)求拋物線的解析式;

2)若D2,m)在該拋物線上,連接CD,DB,求四邊形OCDB 的面積;

3)設(shè)E是該拋物線上位于對稱軸右側(cè)的一個動點(diǎn),過點(diǎn)Ex軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)EEHx軸于點(diǎn)H,再過點(diǎn)FFGx軸于點(diǎn)G,得到矩形EFGH.在點(diǎn)E運(yùn)動的過程中,當(dāng)矩形EFGH為正方形時,求出該正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AD是△ABC的中線,AEBC,射線BEAD于點(diǎn)F,交⊙O于點(diǎn)G,點(diǎn)FBE的中點(diǎn),連接CE.

(1)求證:四邊形ADCE為平行四邊形;

(2)若BC=2AB,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)Ax軸上,OAB是邊長為4的等邊三角形,以O為旋轉(zhuǎn)中心,將OAB按順時針方向旋轉(zhuǎn)60°,得到OA′B′,那么點(diǎn)A′的坐標(biāo)為( )

A.(2,2)B.(2,4)C.(2,2)D.(2,2)

查看答案和解析>>

同步練習(xí)冊答案