【題目】如圖,三角形紙片ABC中,∠B=2∠C,把三角形紙片沿直線AD折疊,點(diǎn)B落在AC邊上的E處,那么下列等式成立的是( 。
A.AC=AD+BDB.AC=AB+BDC.AC=AD+CDD.AC=AB+CD
【答案】B
【解析】
根據(jù)題意證得AB=AE,BD=DE,DE=EC.據(jù)此可對(duì)以下選項(xiàng)進(jìn)行一一判定.
∵△ADE是由△ADB沿直線AD折疊而成,∴AB=AE,BD=DE,∠B=∠AED.又∵∠B=2∠C,∠AED=∠C+∠EDC(三角形外角定理),∠EDC=∠C(等量代換),∴DE=EC(等角對(duì)等邊).A、根據(jù)圖示知:AC=AE+EC=AE+BD,則當(dāng)AD≠AE時(shí),AC≠AD+BD,A項(xiàng)錯(cuò)誤;B、根據(jù)圖示知,AC=AE+EC,因?yàn)?/span>AE+EC=AB+BD,所以AC=AB+BD,B項(xiàng)正確;C、在△ADC中,由三角形的三邊關(guān)系可知AC<AD+CD,C項(xiàng)錯(cuò)誤;D、根據(jù)圖示知,AC=AE+EC,因?yàn)?/span>AE+EC=AB+BD,所以當(dāng)EC≠CD時(shí),AC≠AB+CD,D項(xiàng)錯(cuò)誤.故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC是等邊三角形,P是三角形內(nèi)一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長(zhǎng)為18,則PD+PE+PF=( 。
A. 18B. 9
C. 6D. 條件不夠,不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度.
(1)畫出△ABC向上平移6個(gè)單位得到的△A1B1C1;
(2)以點(diǎn)C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,BE與CD相交于點(diǎn)G,且OE=OD,則AP的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口B位于港口A的南偏東方向,燈塔C恰好在AB的中點(diǎn)處,一艘海輪位于港口A的正南方向,港口B的正西方向的D處,它沿正北方向航行km,到達(dá)E處,測(cè)得燈塔C在北偏東方向上.這時(shí),E處距離港口A有多遠(yuǎn)?(參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在長(zhǎng)方形中,,,動(dòng)點(diǎn)從出發(fā),勻速沿運(yùn)動(dòng),到點(diǎn)停止;同時(shí)動(dòng)點(diǎn)從出發(fā),勻速沿運(yùn)動(dòng),速度是動(dòng)點(diǎn)速度的一半,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)停止運(yùn)動(dòng).如圖②是點(diǎn)出發(fā)后的面積與運(yùn)動(dòng)時(shí)間之間的關(guān)系圖象.
(1)圖②中,求,的值.
(2)當(dāng)運(yùn)動(dòng)多少秒后,,兩點(diǎn)相遇.
(3)在點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)的過程中,記點(diǎn)出發(fā)后的面積為,當(dāng),時(shí),求動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥AC,CD、BE分別是△ABC的角平分線,AG∥BC,AG⊥BG,下列結(jié)論:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°.其中正確的結(jié)論是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)整數(shù)點(diǎn),其順序按圖中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,1)、(3,0)、(3,﹣1)、…,根據(jù)這個(gè)規(guī)律探索可得,第220個(gè)點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形,為邊上一點(diǎn)不與、重合),過作,且,連接.
(1)如圖1,求的度數(shù);
(2)如圖2,連接交于,求證:;
(3)如圖2,當(dāng),,則 (直接寫出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com