【題目】如圖1,AB為⊙O的直徑,C為⊙O上一點,作AD⊥CD,垂足為D.
(1)若直線CD與⊙O相切于點C,求證:△ADC∽△ACB;
(2)如果把直線CD向下平行移動,如圖2,直線CD交⊙O于C、G兩點,若題目中的其他條件不變,tan∠DAC=,AB=10,求圓心O到GB的距離OH的長.
【答案】
【解析】
試題分析:(1)首先連接OC,由CD切⊙O于C,根據(jù)切線的性質(zhì),可得OC⊥CD,又由AD⊥CD,可得OC∥AD,又由OA=OC,易證得∠DAC=∠CAO,根據(jù)圓周角定理求得∠ACB=90°,得出∠ADC=∠ACB,即可證得結(jié)論;
(2)由于四邊形ABGC為⊙O的內(nèi)接四邊形,根據(jù)圓的內(nèi)接四邊形的性質(zhì)得∠B+∠ACG=180°,易得∠ACD=∠B,又∠ADC=∠AGB=90°,利用等角的余角相等得到∠DAC=∠GAB,根據(jù)tan∠DAC==tan∠GAB=和勾股定理求得AG=8,GB=6,然后求得△ABG∽△OBH,根據(jù)相似三角形的性質(zhì)求得==,即可求得OH=4.
(1)證明:連接OC,如圖1,
∵直線CD與⊙O相切于點C,
∴OC⊥CD,
∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∴∠ADC=∠ACB,
∴△ADC∽△ACB;
(2)解:如圖2,∵AB是⊙O的直徑,
∴∠AGB=90°,
∵四邊形ABGC是⊙O的內(nèi)接四邊形,
∴∠ACD=∠B,
∵∠ADC=∠AGB=90°,
∴∠DAC=∠GAB,
∵tan∠DAC==tan∠GAB=,
設GB=3x,AG=4x,
∵AB=10,
∴(3x)2+(4x)2=102,
解得x=2,
∴AG=8,GB=6,
∵OH⊥GB,AG⊥GB,
∴OH∥AG,
∴△ABG∽△OBH,
∴==,
∴OH=4.
科目:初中數(shù)學 來源: 題型:
【題目】大樹的價值很多,可以產(chǎn)生有毒氣體,防止大氣污染,增加土壤肥力,涵養(yǎng)水源,為鳥類及其他動物提供繁衍場所等價值,累計計算,一棵50年樹齡的大樹總計創(chuàng)造價值超過160萬元,其中160萬元用科學記數(shù)法表示為( )
A.1.6×105 B.1.6×106 C.1.6×107 D.1.6×108
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有A、B、C三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在( )
A.在AC,BC兩邊高線的交點處
B.在AC,BC兩邊中線的交點處
C.在AC,BC兩邊垂直平分線的交點處
D.在∠A,∠B兩內(nèi)角平分線的交點處
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標x,縱坐標y的對應值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說法正確的個數(shù)是( )
①拋物線與x軸的一個交點為(﹣2,0);②拋物線與y軸的交點為(0,6);③拋物線的對稱軸是x=1;④在對稱軸左側(cè)y隨x增大而增大.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD=AE,∠BDE=∠CED,∠ABD=∠ACE.
(1)求證:AB=AC;
(2)若∠DAE=2∠ABC=140°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P1(-2,1)和P2(-2,-1),則P1和P2( )
A. 關(guān)于原點對稱 B. 關(guān)于y軸對稱 C. 關(guān)于x軸對稱 D. 不存在對稱關(guān)系
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列圖形分別為綠色食品、節(jié)能、節(jié)水、回收的標志圖片,其中是中心對稱圖形或者是軸對稱圖形的為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com