【題目】(提出問(wèn)題)如圖1,小東將一張AD為12,寬AB為4的長(zhǎng)方形紙片按如下方式進(jìn)行折疊:在紙片的一邊BC上分別取點(diǎn)P、Q,使得BP=CQ,連結(jié)AP、DQ,將△ABP、△DCQ分別沿AP、DQ折疊得△APM,△DQN,連結(jié)MN.小東發(fā)現(xiàn)線(xiàn)段MN的位置和長(zhǎng)度隨著點(diǎn)P、Q的位置發(fā)生改變.
(規(guī)律探索)
(1)請(qǐng)?jiān)趫D1中過(guò)點(diǎn)M,N分別畫(huà)ME⊥BC于點(diǎn)E,NF⊥BC于點(diǎn)F.
求證:①M(fèi)E=NF;②MN∥BC.
(解決問(wèn)題)
(2)如圖1,若BP=3,求線(xiàn)段MN的長(zhǎng);
(3)如圖2,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求MN的長(zhǎng).
【答案】(1)①證明詳見(jiàn)解析;②證明詳見(jiàn)解析;(2);(3).
【解析】
試題(1)①先按照要求做圖,證明線(xiàn)段相等,通常證明所在的三角形全等,所以證明ME=NF,要證明△MEP≌△NPQ,先證明△ABP≌△DCQ,則∠APB=∠DQG,然后證明△MEP≌△NPQ(AAS)即可證得結(jié)論;②只要證出MN∥EF即可,由ME∥NF,ME=NF得出四邊形EFMN是平行四邊形,平行四邊形的對(duì)邊平行得出結(jié)論;(2)做輔助線(xiàn),延長(zhǎng)EM、FN交AD于點(diǎn)G、H.證明△EMP∽△MAG,根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,以及矩形的性質(zhì)即可求解;(3)設(shè)PM、PN分別交AD于點(diǎn)E、F,利用勾股定理求出EF長(zhǎng),然后證明△PEF∽△PMN,根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可求解.
試題解析:(1)①先按照要求做圖,如圖1:證明線(xiàn)段相等,通常證明所在的三角形全等,要證明ME=NF,先證明△MEP≌△NPQ,已知條件不夠,所以得證明△ABP≌△DCQ,∵四邊形ABCD是矩形,∴∠B=∠C=90°,AB=CD.又∵BP=CQ(已知),∴△ABP≌△DCQ(SAS),∴∠APB=∠DQG.∴∠MPE=180°﹣2∠APB=180°﹣2∠DQC=∠NQF.∴△MEP≌△NPQ(AAS),∴ME=NF;②∵M(jìn)E與NF都垂直于BC,∴ME∥NF,∵△MEP≌△NPQ,∴ME=NF,∴四邊形EFMN是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形),∴MN∥BC;
(2)延長(zhǎng)EM、FN交AD于點(diǎn)G、H.∵AB=4,BP=3,∴AM=4,PM=3.∵AD∥BC,∴EM⊥AD.∵∠AMP=∠MEP=∠MGA,∴∠EMP=∠MAG.∴△EMP∽△MAG.∴,設(shè)AG=4a,則EM=×AG=3a,∵四邊形ABEG是矩形,∴BE=4a,∵BP=3,∴EP=4a-3,又∵EP=MG=(4-ME)=(4-3a)=3-a,∴3-a=4a-3,解得:a=,∴AG=,同理DH=.∴MN=GH=12-×2=;(3)設(shè)PM、PN分別交AD于點(diǎn)E、F.∵AD∥BC和折疊角相等,∴∠EPA=∠APB=∠PAE,∴EA=EP.設(shè)EA=EP=x,則EM=6-x,AM=AB=4,在Rt△AME中,42+(6﹣x)2=x2,解得:x=.∴EA=EP=DF=,∴EF=12﹣2×=.∵EF∥MN(已證),∴△PEF∽△PMN.∴,即,解得:MN=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,扇形紙片AOB中,已知∠AOB=90,OA=6,取OA的中點(diǎn)C,過(guò)點(diǎn)C作DC⊥OA交于點(diǎn)D,點(diǎn)F是上一點(diǎn).若將扇形BOD沿OD翻折,點(diǎn)B恰好與點(diǎn)F重合,用剪刀沿著線(xiàn)段BD、DF、FA依次剪下,則剩下的紙片(陰影部分)面積是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全民健身運(yùn)動(dòng)已成為一種時(shí)尚,為了了解我市居民健身運(yùn)動(dòng)的情況,某健身館的工作人員開(kāi)展了一項(xiàng)問(wèn)卷調(diào)查,問(wèn)卷包括五個(gè)項(xiàng)目:A:健身房運(yùn)動(dòng);B:跳廣場(chǎng)舞;C:參加暴走團(tuán);D:散布;E:不運(yùn)動(dòng).
以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.
運(yùn)動(dòng)形式 | A | B | C | D | E |
人數(shù) | 12 | 30 | m | 54 | 9 |
請(qǐng)你根據(jù)以上信息,回答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的共有 人,圖表中的m= ,n= ;
(2)統(tǒng)計(jì)圖中,A類(lèi)所對(duì)應(yīng)的扇形圓心角的度數(shù)為 ;
(3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛(ài)的運(yùn)動(dòng)方式是 ,不運(yùn)動(dòng)的市民所占的百分比是 ;
(4)我市碧沙崗公園是附近市民喜愛(ài)的運(yùn)動(dòng)場(chǎng)所之一,每晚都有“暴走團(tuán)”活動(dòng),若最鄰近的某社區(qū)約有1500人,那么估計(jì)一下該社區(qū)參加碧沙崗“暴走團(tuán)”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=ax+b過(guò)一,二,四象限,且過(guò)(6,0),則關(guān)于二次函數(shù)y=ax2+bx+1的以下說(shuō)法:①圖象與x軸有兩個(gè)交點(diǎn);②a<0,b>0;③當(dāng)x=3時(shí)函數(shù)有最小值;④若存在一個(gè)實(shí)數(shù)m,當(dāng)x≤m時(shí),y隨x的增大而增大,則m≤3.其中正確的是( )
A. ①②B. ①②③C. ①②④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O的直徑為4cm,A是圓上一固定點(diǎn),弦BC的長(zhǎng)為2cm,當(dāng)△ABC為等腰三角形時(shí),其底邊上的高為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過(guò)點(diǎn)C作直線(xiàn)l∥AB,點(diǎn)P是直線(xiàn)l上的一個(gè)動(dòng)點(diǎn),直線(xiàn)PA與⊙O交于另一點(diǎn)D,連結(jié)CD,設(shè)直線(xiàn)PB與直線(xiàn)AC交于點(diǎn)E.
(1)求∠BAC的度數(shù);
(2)當(dāng)點(diǎn)D在AB上方,且CD⊥BP時(shí),求證:PC=AC;
(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中
①當(dāng)點(diǎn)A在線(xiàn)段PB的中垂線(xiàn)上或點(diǎn)B在線(xiàn)段PA的中垂線(xiàn)上時(shí),求出所有滿(mǎn)足條件的∠ACD的度數(shù);
②設(shè)⊙O的半徑為6,點(diǎn)E到直線(xiàn)l的距離為3,連結(jié)BD,DE,直接寫(xiě)出△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫(xiě)出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景(1)如圖1,△ABC中,DE∥BC分別交AB,AC于D,E兩點(diǎn),過(guò)點(diǎn)E作EF∥AB交BC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:△EFC的面積__________,△ADE的面積______________.
探究發(fā)現(xiàn)(2)在(1)中,若BF=m,FC=n,DE與BC間的距離為.請(qǐng)證明.
拓展遷移(3)如圖2,□DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為3、7、5,試?yán)茫?/span>2)中的結(jié)論求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線(xiàn)上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線(xiàn)對(duì)稱(chēng)軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com