【題目】如圖1,在平面直角坐標(biāo)系中,直線AB與x軸、y軸相交于、兩點,動點C在線段OA上(不與O、A重合),將線段CB繞著點C順時針旋轉(zhuǎn)得到CD,當(dāng)點D恰好落在直線AB上時,過點D作軸于點E.
(1)求證,;
(2)如圖2,將沿x軸正方向平移得,當(dāng)直線經(jīng)過點D時,求點D的坐標(biāo)及平移的距離;
(3)若點P在y軸上,點Q在直線AB上,是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的Q點坐標(biāo),若不存在,請說明理由.
【答案】(1),見解析;(2)D(3,1),平移的距離是個單位,見解析;(3)存在滿足條件的點Q,其坐標(biāo)為或或,見解析.
【解析】
(1)根據(jù)AAS或ASA即可證明;
(2)首先求直線AB的解析式,再求出出點D的坐標(biāo),再求出直線B′C′的解析式,求出點C′的坐標(biāo)即可解決問題;
(3)如圖3中,作CP∥AB交y軸于P,作PQ∥CD交AB于Q,則四邊形PCDQ是平行四邊形,求出直線PC的解析式,可得點P坐標(biāo),點C向左平移1個單位,向上平移個單位得到P,推出點D向左平移1個單位,向上平移個單位得到Q,再根據(jù)對稱性可得Q′、Q″的坐標(biāo).
(1)∵,
∴,,
∴,
∵,
∴
(2)∵直線AB與x軸,y軸交于、兩點
∴直線AB的解析式為
∵,
∴,設(shè),則
把代入得到,
∴
∵,
∴直線BC的解析式為,
設(shè)直線的解析式為,把代入得到
∴直線的解析式為,
∴,
∴
∴平移的距離是個單位.
(3)如圖3中,作CP∥AB交y軸于P,作PQ∥CD交AB于Q,則四邊形PCDQ是平行四邊形,
易知直線PC的解析式為y=-x+,
∴P(0,),
∵點C向左平移1個單位,向上平移個單位得到P,
∴點D向左平移1個單位,向上平移個單位得到Q,
∴Q(2,),
當(dāng)CD為對角線時,四邊形PCQ″D是平行四邊形,可得Q″,
當(dāng)四邊形CDP′Q′為平行四邊形時,可得Q′,
綜上所述, 存在滿足條件的點Q,其坐標(biāo)為或或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在中,已知AB=AC,垂足為點D,點F在AD的延長線上,且CE∥BF,試說明DE=DF的理由.
解:因為AB=AC,AD⊥BC(已知)
所以BD=
因為CE∥BF(已知)
所以=
在中,
中
=
=
所以( )
所以DE=DF( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCO,以點O為原點,OC所在的直線為x軸,建立直角坐標(biāo)系,AB交y軸于點D,AD=4,OC=10,∠A=60°,線段EF垂直平分OD,點P為線段EF上的動點,PM⊥x軸于點M點,點E與E'關(guān)于x軸對稱,連接BP、E'M,則BP+PM+ME'的長度的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購買A、B兩種型號的污水處理設(shè)備共8臺,用于同時治理不同成分的污水,若購買A型2臺、B型3臺需54萬,購買A型4臺、B型2臺需68萬元.
(1)求出A型、B型污水處理設(shè)備的單價;
(2)經(jīng)核實,一臺A型設(shè)備一個月可處理污水220噸,一臺B型設(shè)備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)作△ABC關(guān)于點C成中心對稱的△A1B1C1.
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2.
(3)在x軸上求作一點P,使PA1+PC2的值最小,并寫出點P的坐標(biāo)(不寫解答過程,直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃撥款9萬元從廠家購進(jìn)50臺電視機(jī),已知該廠生產(chǎn)三種不同型號的電視機(jī),出廠價分別為甲種每臺1500元, 乙種每臺2100元, 丙種每臺2500元, 若商場同時購進(jìn)其中兩種不同型號的電視機(jī)共50臺,用去9萬元.請你通過計算,說明商場有哪些進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鎮(zhèn)道路改造工程,由甲、乙兩工程隊合作完成.甲工程隊單獨施工比乙工程隊單獨施工多用30天完成此項工程,甲工程隊30天完成的工程與甲、乙兩工程隊10天完成的工程相等.
(1)求甲、乙兩工程隊單獨完成此項工程各需要多少天?
(2)如果甲工程隊施工每天需付施工費1萬元,乙工程隊施工每天需付施工費2.5萬元,甲工程隊至少要單獨施工多少天后,再由甲、乙兩工程隊合作施工完成剩下的工程,才能使施工費不超過64萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進(jìn)20海里到達(dá)B點,此時,測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于_______海里.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com