(2011•鞍山)如圖,四邊形ABCD是平行四邊形,以邊AB為直徑的⊙O經(jīng)過點(diǎn)C,E是⊙O上的一點(diǎn),且∠BEC=45°.
(1)試判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若BE=8cm,sin∠BCE=
45
,求⊙O的半徑.
分析:(1)連接OC,根據(jù)圓周角定理得到∠BOC=2∠BEC=90°,再根據(jù)平行四邊形的性質(zhì)可得AB∥CD,則∠OCD=∠BOC=90°,然后根據(jù)切線的判定定理即可得到CD與⊙O相切;
(2)連接AE,根據(jù)圓周角定理及其推論得∠AEB=90°,∠EAB=∠BCE,而sin∠BCE=
4
5
,則sin∠EAB=
4
5
,根據(jù)三角函數(shù)的定義易求出AB,即可得到圓的半徑.
解答:解:(1)相切.理由如下:
連接OC,如圖,
∵∠BEC=45°,
∴∠BOC=90°,
又∵四邊形ABCD是平行四邊形,
∴AB∥CD.
∴∠OCD=∠BOC=90°,
∴OC⊥CD.
∴CD為⊙O的切線;

(2)連接AE,如圖,
∵AB為⊙O的直徑,
∴∠AEB=90°,
∵∠EAB=∠BCE,sin∠BCE=
4
5
,
∴sin∠EAB=
4
5
,
BE
AB
=
4
5
,
∵BE=8,
∴AB=10,
∴AO=
1
2
AB=5,
∴⊙O的半徑為5 cm.
點(diǎn)評:本題考查了切線的判定定理:經(jīng)過半徑的外端點(diǎn)與半徑垂直的直線是圓的切線.也考查了圓周角定理及其推論、平行四邊形的性質(zhì)以及三角函數(shù)的定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鞍山)如圖,在菱形ABCD中,對角線AC與BD相交于點(diǎn)O,AB=13,AC=10,過點(diǎn)D作DE∥AC交BC的延長線于點(diǎn)E,則△BDE的周長為
60
60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鞍山)如圖,矩形ABCD的對角線AC⊥OF,邊CD在OE上,∠BAC=70°,則∠EOF等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鞍山)如圖,?ABCD中,E、F分別為AD、BC上的點(diǎn),且DE=2AE,BF=2FC,連接BE、AF交于點(diǎn)H,連接DF、CE交于點(diǎn)G,則
S四邊形EHFG
S平行四邊形ABCD
=
2
9
2
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鞍山)如圖:方格紙中的每個小方格都是邊長為1個單位的小正方形,四邊形ABCD和四邊形A1B1C1D1的頂點(diǎn)均在格點(diǎn)上,以點(diǎn)O為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系.
(1)畫出四邊形ABCD沿y軸正方向平移4格得到的四邊形A2B2C2D2,并求出點(diǎn)D2的坐標(biāo).
(2)畫出四邊形A1B1C1D1繞點(diǎn)O逆時針方向旋轉(zhuǎn)90°后得到的四邊形A3B3C3D3,并求出A2、B3之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鞍山)如圖,在平面直角坐標(biāo)系中,正方形ABCD的邊長為
5
,點(diǎn)A在y軸正半軸上,點(diǎn)B在x軸負(fù)半軸上,B(-1,0),C、D兩點(diǎn)在拋物線y=
1
2
x2+bx+c上.
(1)求此拋物線的表達(dá)式;
(2)正方形ABCD沿射線CB以每秒
5
個單位長度平移,1秒后停止,此時B點(diǎn)運(yùn)動到B1點(diǎn),試判斷B1點(diǎn)是否在拋物線上,并說明理由;
(3)正方形ABCD沿射線BC平移,得到正方形A2B2C2D2,A2點(diǎn)在x軸正半軸上,求正方形ABCD的平移距離.

查看答案和解析>>

同步練習(xí)冊答案