12、如果對任意實(shí)數(shù)x,等式:(1-2x)10=a0+a1x+a2x2+a3x3+…+a10x10都成立,那么(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a10)=
10
.(用數(shù)字作答)
分析:將x=0,x=1分別代入等式,當(dāng)x=0時可以得到a0的值.當(dāng)x=1時,可以得到a0+a1+a2+…+a9+a10的值,由此可以得到(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a10)的值.
解答:解:由題意可知:
當(dāng)x=0時,(1-2x)10=1=a0+a1x+a2x2+a3x3+…+a10x10=a0
當(dāng)x=1時,(1-2x)10=1=a0+a1x+a2x2+a3x3+…+a10x10=a0+a1+a2+…+a9+a10
所以(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a10
=a0+a1+a2+…+a9+a10+9a0=1+9=10.
故答案為:10.
點(diǎn)評:本題考查了等式的應(yīng)用.從等式分析a0的值和a0+a1+a2+…+a9+a10的值是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖1,在平面內(nèi)取一點(diǎn)O,過點(diǎn)O作兩條夾角為60°的數(shù)軸,使它們以點(diǎn)O為公共原點(diǎn)且具有相同的單位長度,這樣在平面內(nèi)建立的坐標(biāo)系稱為斜坐標(biāo)系,我們把水平放置的數(shù)軸稱為橫軸(記作a軸),將斜向放置的數(shù)軸稱為斜軸(記作b軸).類似
于直角坐標(biāo)系,對于斜坐標(biāo)平面內(nèi)的任意一點(diǎn)P,過點(diǎn)P分別作b軸、a軸的平行線交a軸、b軸于點(diǎn)M、N,若點(diǎn)M、N分別在a軸、b軸上所對應(yīng)的實(shí)數(shù)為m與n,則稱有序?qū)崝?shù)對(m,n)為點(diǎn)P的坐標(biāo).可知建立了斜坐標(biāo)系的平面內(nèi)任意一個點(diǎn)P與有序?qū)崝?shù)對(m,n)之間是相互唯一確定的.
精英家教網(wǎng)
(1)請寫出圖2(其中虛線均平行于a軸或b軸)中點(diǎn)P的坐標(biāo),并在圖中標(biāo)出點(diǎn)Q(2,-3);
(2)如圖3(其中虛線均平行于a軸或b軸),在斜坐標(biāo)系中點(diǎn)A(1,4)、B(1,-1)、C(6,-1).
精英家教網(wǎng)
①判斷△ABC的形狀,并簡述理由;
②如果點(diǎn)D在邊BC上,且其坐標(biāo)為(2.5,-1),試問:在邊BC上是否存在點(diǎn)E使△ACE與△ABD相全等?如有,請寫出點(diǎn)E的坐標(biāo),并說明它們?nèi)鹊睦碛;如沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,在平面內(nèi)取一點(diǎn)O,過點(diǎn)O作兩條夾角為60°的數(shù)軸,使它們以點(diǎn)O為公共原點(diǎn)且具有相同的單位長度,這樣在平面內(nèi)建立的坐標(biāo)系稱為斜坐標(biāo)系,我們把水平放置的數(shù)軸稱為橫軸(記作a軸),將斜向放置的數(shù)軸稱為斜軸(記作b軸).類似
于直角坐標(biāo)系,對于斜坐標(biāo)平面內(nèi)的任意一點(diǎn)P,過點(diǎn)P分別作b軸、a軸的平行線交a軸、b軸于點(diǎn)M、N,若點(diǎn)M、N分別在a軸、b軸上所對應(yīng)的實(shí)數(shù)為m與n,則稱有序?qū)崝?shù)對(m,n)為點(diǎn)P的坐標(biāo).可知建立了斜坐標(biāo)系的平面內(nèi)任意一個點(diǎn)P與有序?qū)崝?shù)對(m,n)之間是相互唯一確定的.

(1)請寫出圖2(其中虛線均平行于a軸或b軸)中點(diǎn)P的坐標(biāo),并在圖中標(biāo)出點(diǎn)Q(2,-3);
(2)如圖3(其中虛線均平行于a軸或b軸),在斜坐標(biāo)系中點(diǎn)A(1,4)、B(1,-1)、C(6,-1).

①判斷△ABC的形狀,并簡述理由;
②如果點(diǎn)D在邊BC上,且其坐標(biāo)為(2.5,-1),試問:在邊BC上是否存在點(diǎn)E使△ACE與△ABD相全等?如有,請寫出點(diǎn)E的坐標(biāo),并說明它們?nèi)鹊睦碛;如沒有,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案