解方程
(1)x2-8x+1=0(用配方法)
(2)3x2+5(2x+1)=0
(3)3(x-5)2=x(5-x)
(4)x2+m(2x+m)-x-m=0.
【答案】
分析:(1)將等式左邊配方,然后將常數(shù)項移到右邊,繼而開平方可得出方程的根.
(2)先去括號,然后將利用公式法,繼而可得出方程的根;
(3)先移項,然后提取公因式(x-5),將左邊進行分解,繼而可得出方程的根.
(4)將先去括號,然后合并同類項,繼而將左邊的式子因式分解,繼而可得出方程的根.
解答:解:(1)原方程可化為:(x-4)
2=15,
兩邊分別開平方可得:x-4=±
,
解得:x
1=4+
,x
2=4-
;
(2)去括號得:3x
2+10x+5=0,
故可得:x=
,
即x
1=
,x
2=
;
(3)移項得:3(x-5)
2-x(5-x)=0,
將等式左邊分解得:(x-5)(4x-15)=0,
解得:x
1=5,x
2=
;
(4)去括號、合并得:x
2+(2m-1)x+m
2-m=0,
將等式左邊分解得:(x+m)(x-m+1)=0,
解得:x
1=-m,x
2=m-1.
點評:本題考查了解一元二次方程的知識,解答本題的關(guān)鍵是掌握公式法、因式分解發(fā)解一元二次方程的方法,難度一般.