【題目】如圖1.紙上有5個邊長為1的小正方形組成的紙片,可把它剪拼成一個正方形(圖2)

3)

拼成的正方體的面積與邊長分別是多少?

你能把這十個小正方體組成的圖形紙(圖3),剪拼成一個大正方形嗎?若能,則請畫出剪拼成的大正方形,并求出其邊長為多少?

【答案】(1)面積為5,邊長為;(2)邊長為

【解析】

(1)一共有5個小正方形,那么組成的大正方形的面積為5,邊長為5的算術(shù)平方根;
(2)根據(jù)面積公式求出邊長是,根據(jù)勾股定理12+22=5,畫出正方形即可;
(3)一共有10個小正方形,那么組成的大正方形的面積為10,邊長為10的算術(shù)平方根,在所給圖形中截取兩條長為的且互相垂直的線段,進而拼合即可.

(1)邊長=.
(2)能.如圖所示:

(3)能,如圖所示:

邊長=.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一道題:計算(2x3-3x2y-2xy2)-(x3-2xy2y3)+(-x3+3x2yy3)的值,其中x=-,y=-2.甲同學把x=-錯抄成x.但他計算的結(jié)果是正確的,請你分析這是什么原因.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1)(-)-(+);         (2)(+3.7)-(+6.8);

(3)(-16)-(-10); (4)3.36-4.16.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x﹣2經(jīng)過A、C兩點,且AB=2.

(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設(shè)s= ,當t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),在平面直角坐標系中,A(a,0),C(b,2),過C作CBx軸,且滿足(a+b)2+=0.

(1)求三角形ABC的面積.

(2)若過B作BDAC交y軸于D,且AE,DE分別平分CAB,ODB,如圖2,求AED的度數(shù).

(3)在y軸上是否存在點P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從2004年8月1日起,浙江省城鄉(xiāng)居民生活用電執(zhí)行新的電價政策:安裝”一戶一表”的居民

用戶,按用抄見電量(每家用戶電表所表示的用電量)實行階梯式累進加價,其中低于50千瓦時(含50

千瓦時)部分電價不調(diào)整;51—200千瓦時部分每千瓦時電價上調(diào)0.03元;超過200千瓦時部分每千

瓦時電價上調(diào)0.10元.已知調(diào)整前電價統(tǒng)一為每千瓦時0.53元.

(1)若許老師家10月份的用電量為130千瓦時,則10月份許老師家應(yīng)付電費多少元?

(2)已知許老師家10月份的用電量為千瓦時,請完成下列填空:

①若千瓦時,則10月份許老師家應(yīng)付電費為 元;

②若50<≤200千瓦時,則10月份許老師家應(yīng)付電費為 元;

③若>200千瓦時,則10月份許老師家應(yīng)付電費為 元.

(3)若10月份許老師家應(yīng)付電費為96.50元,則10月份許老師家的用電量是多少千瓦時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點CD,在直線CD上有一點P

1)如果P點在C、D之間運動時,問∠PAC,∠APB,∠PBD有怎樣的數(shù)量關(guān)系?請說明理由.

2)若點PC、D兩點的外側(cè)運動時(P點與點CD不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算:(15x3y+10x2y﹣5xy2÷5xy

2)計算:(3x+y)(x+2y﹣3xx+2y

3)先化簡,再求值:(x+2)(x2x+12,其中x=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,BC=AC,BCA=90°,P為直線AC上一點,過點AADBP于點D,交直線BC于點Q.

(1)如圖1,當P在線段AC上時,求證:BP=AQ;

(2)如圖2,當P在線段CA的延長線上時,(1)中的結(jié)論是否成立?   (填成立不成立”)

(3)在(2)的條件下,當∠DBA=   度時,存在AQ=2BD,說明理由.

查看答案和解析>>

同步練習冊答案